DESCRIBING MIMO DESIGNS FOR RAPID PROTOTYPING IN THE BEE
ENVIRONMENT

Kimmo Kuusilinna', Chen Chang, Hans-Martin Bluethgen, Danijela Cabric,
Brian Richards, and Robert W. Brodersen

'Institute of Digital and Computer Systems, Tampere University of Technology
Korkeakoulunkatu 1, FIN-33720 Tampere, Finland (Europe)
phone: +358 3 3115 11, fax: +358 3 3115 3095, email: kimmo.kuusilinna@cs.tut.fi

ABSTRACT

Designing VLSI circuits for efficient stream processing im-
plementations requires the designer to simultaneously con-
sider both algorithmic and hardware architectural trade-offs.
Rapid prototyping for such applications implies not only
short design time but also satisfying certain design con-
straints, such as timing and silicon area. Direct-mapping is a
method for reasoning about these issues and describing them
unambiguously. The BEE (Berkeley Emulation Engine) with
its rapid prototyping flow provides the platform for emulat-
ing a class of these systems in real-time.

1. INTRODUCTION

The Berkeley Emulation Engine (BEE) [4] is a hardware
emulator that comprises twenty five-hundred-thousand-gate
FPGAs and it is designed to facilitate the real-time prototyp-
ing of digital signal processing in communication systems.
Real-time operation is important to allow the use of the
same radio front-ends that are utilized in the final system. In
addition, real-time operation is good at revealing possible
timing problems in the design.

The BEE hardware architecture provides a homogene-
ous two-layer mesh interconnection structure, which facili-
tates the design of fast tightly coupled DSP implementations.
The first layer is utilized for local connections and the second
layer for board-level connections. System clock rates can
reach 50 MHz during the emulation, and local connections
can be even faster, enabling real-time behaviour for many
highly parallel implementations.

A single BEE board has 2400 I/O pins for interfacing
with external components, such as radio front-ends, or other
BEE units. Depending on the utilized signalling standard
(LVTTL or LVDS) and the off-board connection speed, this
results in a theoretical I/O transmission capacity of 100-
200 Gb/s. Particularly, the nature of the Multiple-Input Mul-
tiple-Output (MIMO) systems is such that large I/O band-
widths are typically required.

2. MIMO SYSTEMS AND PROTOTYPING

An exemplary application of BEE is the simulation and pro-
totyping of MIMO communication systems. As described in
the following section, this application benefits strongly from

the computational resources and the high-bandwidth in-
put/output capabilities the BEE environment provides.

2.1 Introduction to MIMO Systems

There has been a rising interest in multiple antennas for
wireless communications systems after Foschini showed [2]
that by exploiting the spatial characteristics of a wireless
channel a communication structure with multiple transmit
and receive antennas can increase its transmission capacity
over the single antenna approach. Earlier systems used mul-
tiple antennas either on the transmitter (Tx) or receiver (Rx)
side, and deployed beam forming and diversity techniques to
obtain power gain and more reliable wireless links. How-
ever, having multiple antennas on both Tx and Rx ends cre-
ates a MIMO system in which parallel data streams can be
transmitted in the same frequency band through spatial mul-
tiplexing [11]. Compared to a single antenna system (SISO)
that operates in bandwidth B and has Shannon’s capacity
C=B - logy(1+SNR), MIMO transmission under the same
bandwidth constraints can increase the capacity proportion-
ally to the number of antennas (the minimum of the number
of Tx and the number of Rx antennas).

In order to develop intuition for the capacity of an NxN
MIMO system and how that capacity can be achieved, we
will consider the following commonly used representation of
a linear MIMO system:

y=Hx+z
where H is the NxN channel matrix, x is an Nx1 vector of
transmitted data on N Tx antennas, y is an Nx1 vector rep-
resenting the received signal on N Rx antennas, and z is an
Nx1 vector of additive white Gaussian noise, whose power
o” determines the SNR in the channel. A singular-value de-
composition (SVD) [3] of matrix H is:
H=U-diag(d,,d,,....d,) V"

where U and V are orthogonal matrices, that is
UU=VV™=L. If input x and output y are multiplied by V
and U™, respectively, then the channel is decoupled into N
parallel streams, that is N independent SISO channels as
depicted in Fig. 1. Then, the MIMO channel capacity can be
expressed as:

N P
C=B) log,(1+d}

=1 N0'2)

693

Tx Channel q z, Rx
1 %

5 v 3 vl Clu Pl uTt

z
N
dN

Figure 1: Block diagram of the SVD decoupling concept.

In practice, achieved data rates can be lower than pre-
dicted by the linearly increasing capacity growth due to many
reasons that are subject of ongoing research. Important ques-
tions include the nature of the MIMO wireless channel
model, the antenna array configurations, the channel estima-
tion algorithms, and the implementation loss in the analog
front-end and finite precision digital processing. To accu-
rately model and experiment with these issues, a real-time
wireless MIMO prototype is necessary.

Decoding a MIMO channel requires the estimation of an
NxN matrix and solving of a system of N linear equations.
There are numerous algebraic methods to solve this system,
for example SVD, LU, Cholesky, and QR decomposition [3].
The first developed prototype of a MIMO system was V-
BLAST, based on decision feedback detectors, which used
successive cancellation based on QR decomposition of the
channel matrix. However, this algorithm is sub-optimal be-
cause the channel is only known at the Rx side. For optimal
performance, both Tx and Rx need to have knowledge about
the channel. This can be achieved through SVD-based algo-
rithms [10]. Nevertheless, the improved performance is a
result of much larger computational complexity. Table 1
compares the number of operations required by SVD and QR
algorithms in a 4x4 MIMO system.

Table 1: Computation complexity of MIMO algorithms.

|Addition/Subtraction Multiplication Division

SVD | 344 455 47
QR |79 79 22

Channel estimation can be done through adaptive least
square estimation techniques (LMS or RLS) [7] using a pilot
sequence or even through blind algorithms. In addition, mul-
tiple antenna system design may include the shutoff of weak
spatial channels that reduces the complexity and the size of
the system, or adaptive modulation techniques, which both
require some form of feedback from the receiver back to the
transmitter.

Theoretical and simulation studies characterized multi-
ple antenna algorithms under various channel models but less
attention has been paid to implementation issues including
architectural and circuit optimization, feasibility for integra-
tion on a silicon chip, and testing in real indoor wireless envi-
ronment. Implementing the algorithm that provides best theo-
retical channel capacity might not always be feasible due to
the computational complexity under real-time operation con-
straints. Our approach for implementation is to explore archi-
tectures of various multiple antenna algorithms, identify

common building blocks, and choose solutions that are the
most suitable for evaluation and test using the fast BEE pro-
totyping platform.

2.2 Real-time Prototyping of MIMO Systems

Some properties of MIMO systems like the channel capacity
can be derived by theoretical approaches. Other properties
like the stability of adaptive algorithms under time-varying
channel conditions or the effect of finite word length im-
plementations need to be found out by running simulations.
One of the important quality measures for communication
systems is the bit error rate (BER). The number of cycles
required for the simulation of an entire BER curve can easily
be in the order of 10", Taking into account the number of
operations per cycle typical for MIMO systems, large com-
putational resources are required to run these simulations in
reasonable time. With the BEE prototyping system, it is pos-
sible to map computation intensive parts of a MIMO system
onto parallel functional units. For example, a matrix-vector
multiplication can be mapped directly onto the appropriate
number of multipliers and adders. By this direct-mapping
approach in combination with the large number of FPGAs,
the BEE system allows for simulating even complex MIMO
systems in real-time.

By connecting radio frequency (RF) front-ends to BEE,
it is possible to evaluate MIMO systems under real channel
conditions. BEE provides the necessary I/O hardware in
terms of the number of ports and the data bandwidth. The
sample rate for a system that uses 20 MHz bandwidth has to
be at least 40 MHz with I and Q channel having a resolution
of 16 bit each. A 4x4-antenna system requires 256 I/O signals
and a total bandwidth of 640 MB/s for either transmit or re-
ceive direction. A 16x16-antenna system requires 1024 1/O
signals and 2560 MB/s in either transmit or receive direction.

2.3 MIMO System Setup

Fig. 2 shows a block diagram of an NxN-antenna MIMO
system demonstrator that will be implemented using the
BEE platform. This system employs the narrow-band chan-
nels of an OFDM modulation scheme and a multiple-
antenna algorithm based on singular-value decomposition

Digital Baseband P ing on BEE F ype Platform Parallel RF Front-End
T TI ----- I\-n iltransp. 4 N- 1Y
- s il R~
Datal![2 § |1 M N
Bits 3| & & 2[*{sip 2 $L 2 Hoal®) .
£3% ile . H
33 HEA N
o= yl1 My N

Multiple-
Carrier

" Multiple-Antenna T
Processing

n Processing

H . .
transp. . transp. | pmh I Y
1 'H 1| N(svp| N P- | mi 1 1
tHet{prs]ert1 L f [s]+&
Y

Epyeeyeyepey: prpepmppep——————————p——y—, pogeppy———

co
Data %-.%2 1 il 2N N M 11 v 2Y
A HER pis|ei svDletd2 \o>7 2 ""'i. . B .
Ba: uls . of| b I .
€3t NN o B :
[- 1 7
2ey 1 My N N Mh 11 N
a luN.,_-_,_‘ N)%
PIS] M N |« | FFT (X)
i . M nlcpl] <
______________ g Pl §
. M .
N: Number of A M: Number of Carriers —+—» Number of Signals

Figure 2: Block diagram of an NxN-antenna MIMO sys-
tem with a parallel RF front-end.

694

[6]. The digital baseband processing of the transceiver, per-
formed on BEE, connects to a scaleable parallel RF front-
end with up to 16 transmit and receive antennas. First ex-
periments with narrow-band transmission systems and RF
front-ends have shown the feasibility of this approach [5].
The next step of setting up the parallel RF front-end is cur-
rently in preparation.

3. DESCRIBING DESIGNS FOR BEE

There are two basic emulation configurations for our MIMO
system as depicted in Fig. 3. The first option is to emulate
the whole transmitter-channel-receiver chain on a single
BEE unit. This approach has the advantage that the condi-
tions are very controllable and experiments can be con-
ducted with different channel models. Disadvantages in-
clude limited decoupling of the transmitter and the receiver,
not exercising the real radio front-ends, and possibly too
idealized channel models. These issues can be addressed by
using two BEE units as shown in Fig. 3b. Naturally, larger
systems could be built using multiple BEE units; four units
have been built so far.

a) Channel emulation

b) Emulation with physical radio front-ends

Figure 3: The basic conceptual emulation configurations.

3.1 Direct-mapping

Direct-mapping is a design method that simultaneously de-
scribes the functionality and the architecture utilizing blocks
of sub-designs with well-known behaviour and hardware
implementation.

Matlab Simulink [8] and Xilinx System Generator
(XSQ) [9] are used for design entry. The XSG provides a set
of blocks that can be simulated in Simulink and implemented
on a FPGA. Corresponding to the nature of Simulink simula-
tions, the blocks are a good match for datapath components.
Since the bocks include components for basic Boolean logic,
control can also be implemented. However, this is somewhat
cumbersome and, therefore, Matlab StateFlow finite state
machines are the preferred way to embed control into the
design. As seen from Fig. 2, the MIMO system to be proto-
typed is very dataflow oriented which suits the direct-
mapping paradigm.

XSG design blocks are cycle and bit-accurate represen-
tations, but the internal hardware architecture may vary in
different designs due to low-level architectural optimizations.
Utilizing direct-mapping, the implementation form typically
follows the function, which tends to result in highly parallel
architectures. Parallelism allows the designs to run on slower
clock speeds, which suits the 50 MHz platform constraint.
The relatively low frequency clock allows us to emphasize

low-power design practices and relatively straightforward
ASIC conversion without compromising the necessary
throughput.

Direct-mapped designs are easy and therefore fast to
synthesize because the designer already made many of the
architectural decisions during the design entry. Incorporated
with the parameterization property of XSG blocks, this al-
lows rapid experimentation with word-length effects of
fixed-point computations. As mentioned earlier, this is im-
portant for validating the stability of the algorithm under
realistic run-time conditions.

3.2 Coarse Partitioning and Routing

The MIMO implementation is much larger than the capacity
of a single FPGA. Therefore, the implementation must be
partitioned on multiple FPGAs. To parallel the component-
level direct-mapping, the partitioning is the responsibility of
the designer and it is achieved by grouping blocks into hier-
archical sub-designs. The two primary concerns in this proc-
ess are the amount of logic in a sub-design, which should
normally be bounded by the logic and I/O capacity of the
FPGA.

In the basic case, there are 48 signal lines between
neighbouring FPGAs on the BEE board. This FPGA-to-
FPGA routing and FPGA 1/O assignment is done automati-
cally by a dedicated program. Additional routing capacity
can be achieved by time multiplexing signals or routing them
through other FPGAs.

3.3 Extending the Blockset

The convenience of the direct-mapping method is quite de-
pendent on the suitability and completeness of the underly-
ing component library (blockset). If the desired component
does not exist in the library, either a new block must be cre-
ated or its functionality achieved by combining components
that are more primitive. These are also the primary methods
for increasing the expressiveness of the original blockset.

Sub-designs consisting of original blocks are convenient
since it is easy to examine their construction and, if neces-
sary, change the design to suit the new requirements. How-
ever, sometimes the sub-designs are so large or contain spe-
cial structures that designing a new dedicated component is
easier. An example of such a situation is a large adder tree.
The System Generator environment includes a black box
component that can be used to refer to user-defined designs
in VHDL. Synopsys’ Module Compiler is an effective way to
describe these large datapath components and the concepts
behind building a custom library are documented in more
detail in [1].

3.4 Estimation

Due to the explicit architecture in direct-mapped designs, an
experienced designer can usually estimate the design area
just by adding up the estimated areas of all the utilized com-
ponents. If the design blocks are on sufficiently high-level,
this is not an unreasonable task. Furthermore, the designer
can visually estimate the delays associated with combina-

695

tional sections and use this information to balance the logic
depth between registers.

The same property allows us to estimate the design area
automatically using a separate program. Simulink-level esti-
mations are very important because they provide fast feed-
back on the feasibility of a design. The estimations are based
on the pre-characterization of each block used in the libraries.
This should be done exhaustively over all reasonable values
of the block parameters. Similarly, the delay through each
block and the energy required for the computation can be
tabulated. However, this method has its limitations. It is not
unusual for the Simulink-level estimation to be 30% off.
However, system-level estimations can be run in a matter of
minutes instead of hours or days that are typical for imple-
mentations of large designs. Although small performance
differences in estimations at this level may not be relevant or
even accurate, larger differences are useful for determining
the relative merits of designs. Alternatively, the XSG pro-
vides a native method for area estimation.

3.5 Testing Designs at Run-time

A number of options are available in run-time design testing
to trade-off measurement convenience, test repeatability, the
maturity of the components in the test setup, and other simi-
lar issues. The source of the inputs to the design is the pri-
mary distinguishing factor. If the setup is very mature and,
for example, the radio front-ends are available, the tests can
be performed with real-world I/O. If repeatable test vectors
are needed, they can be fed from mass storage devices, or a
test bench can be compiled for the emulation along with the
design under test.

As depicted in Fig. 3, the capacity of the emulator al-
lows multiple conventionally sized chips to be run in the
same emulation, for example, the interoperability of a trans-
mitter, a receiver, and a channel model can be tested. This is
very useful for initial debugging, although it is not a very
realistic operation environment, since a common clock that
can be used to reduce timing-related problems can be routed
to all parts of the design. Furthermore, modelling the channel
allows the exploration of conditions that might be physically
difficult to set up. Similarly, performance and functionality
verification can be implemented on the emulator.

Viewing the signal behaviour inside the FPGAs is possi-
ble with Xilinx ChipScope [9]. ChipScope embeds additional
logic into the designs, which mimics the functionality of a
logic analyzer. In addition, it is possible to include extra logic
to the design to monitor interesting behaviour or to store in-
termediate or final results. These methods facilitate data col-
lection over long periods of time, for example to validate
signal to noise ratios or bit error rates.

4. CONCLUSIONS

For many digital streaming applications, particularly those
that interface with radio front-ends, implementations that are
power and area efficient with real-time constraints are
needed. Meeting all these criteria with synthesis from purely
functional descriptions may not be possible and the algo-
rithm and architecture trade-offs are closely intertwined.

Direct-mapping with parameterizable components provides
a way to describe both computation and architecture simul-
taneously. As an additional benefit, synthesis from these
descriptions is fast and provides predictable results.

For rapid prototyping, enhancing the designer productiv-
ity is of primary interest. This paper concentrates on four
issues from the different stages of prototyping and details
their implementation on the BEE environment. Estimation is
crucial in early design stages to tie the algorithmic decisions
to hardware trade-offs. Design re-use is advocated by using
an extensible set of direct-mapped components. Real-time
prototyping is facilitated by the fixed wire arrangement in the
BEE emulator and the corresponding partitioning and routing
methods. Finally, the validation of designs is supported by
the rapid prototyping itself and the debugging methodology.

5. ACKNOWLEDGEMENTS

This work was funded by Academy of Finland, DARPA and
MARCO under C2S2, the U.S. Army Research Office, and
the Berkeley Wireless Research Center supporting compa-
nies. In addition, we would like to acknowledge donations
from Xilinx and The Mathworks Inc.

REFERENCES

[1] W. R. Davis, et al, “A Design Environment for High-
Throughput, Low-Power Dedicated Signal Processing Sys-
tems,” IEEE J. Solid-State Circuits, vol. 37, pp. 420-431, Mar.
2002.

[2] G. J. Foschini, “Layered space-time architecture for wireless
communications in fading environment using multiple-elements
antennas,” Bell Labs Technical Journal, vol. 1, pp. 41-59, Au-
tumn 1996.

[3] G. H. Golub and C. F. V. Loan, Matrix Computation, 2nd edi-
tion, John Hopkins University Press, MD, 1993.

[4] K. Kuusilinna, et al., “Designing BEE: a Hardware Emulation
Engine for Signal Processing in Low-Power Wireless Applica-
tions,” EURASIP J. on Applied Signal Processing, vol. 2003,
pp. 502-513, May 2003.

[5] K. Kuusilinna, et al., Real-Time System-on-a-Chip Emulation —
Emulation Driven System Design with Direct Mapped Virtual
Components, In Winning the SoC Revolution - Experiences in
Real Design, Ed: G. Martin and H. Chang, Kluwer, 2003.

[6] A.S.Y.Poon, D.N. C. Tse, and R. W. Brodersen, “An adaptive
multiple-antenna transceiver for slowly flat-fading channels,”
IEEE Trans. on Communications, vol. 51, pp. 1820—1827, Nov.
2003.

[7] J. G. Proakis, et al., Algorithms for Statistical Signal Processing,
Prentice Hall, 2001.

[8] www.mathworks.com.

[9] www xilinx.com.

[I0IN. Zhang, Algorithm/Architecture Co-Design for Wireless
Communications Systems, Ph. D. Thesis, UC Berkeley, 2001.

[I1]L. Zheng and D. N. C. Tse, “Diversity and Multiplexing: A
fundamental tradeoff in multiple antenna channels,” IEEE
Trans. on Information Theory, vol. 49, pp. 1073-1096, May
2003.

696

	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Robert Brodersen
	Brian Richards
	Danijela Cabric
	Hans-Martin Bluethgen
	Chen Chang
	Kimmo Kuusilinna

