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ABSTRACT

Designing VLSI circuits for efficient stream processing im-
plementations requires the designer to simultaneously con-
sider both algorithmic and hardware architectural trade-offs.
Rapid prototyping for such applications implies not only
short design time but also satisfying certain design con-
straints, such as timing and silicon area. Direct-mapping is a
method for reasoning about these issues and describing them
unambiguously. The BEE (Berkeley Emulation Engine) with
its rapid prototyping flow provides the platform for emulat-
ing a class of these systems in real-time.

1. INTRODUCTION

The Berkeley Emulation Engine (BEE) [4] is a hardware
emulator that comprises twenty five-hundred-thousand-gate
FPGAs and it is designed to facilitate the real-time prototyp-
ing of digital signal processing in communication systems.
Real-time operation is important to allow the use of the
same radio front-ends that are utilized in the final system. In
addition, real-time operation is good at revealing possible
timing problems in the design.

The BEE hardware architecture provides a homogene-
ous two-layer mesh interconnection structure, which facili-
tates the design of fast tightly coupled DSP implementations.
The first layer is utilized for local connections and the second
layer for board-level connections. System clock rates can
reach 50 MHz during the emulation, and local connections
can be even faster, enabling real-time behaviour for many
highly parallel implementations.

A single BEE board has 2400 I/O pins for interfacing
with external components, such as radio front-ends, or other
BEE units. Depending on the utilized signalling standard
(LVTTL or LVDS) and the off-board connection speed, this
results in a theoretical I/O transmission capacity of 100-
200 Gb/s. Particularly, the nature of the Multiple-Input Mul-
tiple-Output (MIMO) systems is such that large I/O band-
widths are typically required.

2. MIMO SYSTEMS AND PROTOTYPING

An exemplary application of BEE is the simulation and pro-
totyping of MIMO communication systems. As described in
the following section, this application benefits strongly from

the computational resources and the high-bandwidth in-
put/output capabilities the BEE environment provides.

2.1 Introduction to MIMO Systems

There has been a rising interest in multiple antennas for
wireless communications systems after Foschini showed [2]
that by exploiting the spatial characteristics of a wireless
channel a communication structure with multiple transmit
and receive antennas can increase its transmission capacity
over the single antenna approach. Earlier systems used mul-
tiple antennas either on the transmitter (Tx) or receiver (Rx)
side, and deployed beam forming and diversity techniques to
obtain power gain and more reliable wireless links. How-
ever, having multiple antennas on both Tx and Rx ends cre-
ates a MIMO system in which parallel data streams can be
transmitted in the same frequency band through spatial mul-
tiplexing [11]. Compared to a single antenna system (SISO)
that operates in bandwidth B and has Shannon’s capacity
C=B - logy(1+SNR), MIMO transmission under the same
bandwidth constraints can increase the capacity proportion-
ally to the number of antennas (the minimum of the number
of Tx and the number of Rx antennas).

In order to develop intuition for the capacity of an NxN
MIMO system and how that capacity can be achieved, we
will consider the following commonly used representation of
a linear MIMO system:

y=Hx+z
where H is the NxN channel matrix, x is an Nx1 vector of
transmitted data on N Tx antennas, y is an Nx1 vector rep-
resenting the received signal on N Rx antennas, and z is an
Nx1 vector of additive white Gaussian noise, whose power
o” determines the SNR in the channel. A singular-value de-
composition (SVD) [3] of matrix H is:
H=U-diag(d,,d,,....d,) V"

where U and V are orthogonal matrices, that is
UU=VV™=L. If input x and output y are multiplied by V
and U™, respectively, then the channel is decoupled into N
parallel streams, that is N independent SISO channels as
depicted in Fig. 1. Then, the MIMO channel capacity can be
expressed as:

N P
C=B) log,(1+d}

=1 N0'2)
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Figure 1: Block diagram of the SVD decoupling concept.

In practice, achieved data rates can be lower than pre-
dicted by the linearly increasing capacity growth due to many
reasons that are subject of ongoing research. Important ques-
tions include the nature of the MIMO wireless channel
model, the antenna array configurations, the channel estima-
tion algorithms, and the implementation loss in the analog
front-end and finite precision digital processing. To accu-
rately model and experiment with these issues, a real-time
wireless MIMO prototype is necessary.

Decoding a MIMO channel requires the estimation of an
NxN matrix and solving of a system of N linear equations.
There are numerous algebraic methods to solve this system,
for example SVD, LU, Cholesky, and QR decomposition [3].
The first developed prototype of a MIMO system was V-
BLAST, based on decision feedback detectors, which used
successive cancellation based on QR decomposition of the
channel matrix. However, this algorithm is sub-optimal be-
cause the channel is only known at the Rx side. For optimal
performance, both Tx and Rx need to have knowledge about
the channel. This can be achieved through SVD-based algo-
rithms [10]. Nevertheless, the improved performance is a
result of much larger computational complexity. Table 1
compares the number of operations required by SVD and QR
algorithms in a 4x4 MIMO system.

Table 1: Computation complexity of MIMO algorithms.

|Addition/Subtraction Multiplication Division

SVD | 344 455 47
QR |79 79 22

Channel estimation can be done through adaptive least
square estimation techniques (LMS or RLS) [7] using a pilot
sequence or even through blind algorithms. In addition, mul-
tiple antenna system design may include the shutoff of weak
spatial channels that reduces the complexity and the size of
the system, or adaptive modulation techniques, which both
require some form of feedback from the receiver back to the
transmitter.

Theoretical and simulation studies characterized multi-
ple antenna algorithms under various channel models but less
attention has been paid to implementation issues including
architectural and circuit optimization, feasibility for integra-
tion on a silicon chip, and testing in real indoor wireless envi-
ronment. Implementing the algorithm that provides best theo-
retical channel capacity might not always be feasible due to
the computational complexity under real-time operation con-
straints. Our approach for implementation is to explore archi-
tectures of various multiple antenna algorithms, identify

common building blocks, and choose solutions that are the
most suitable for evaluation and test using the fast BEE pro-
totyping platform.

2.2 Real-time Prototyping of MIMO Systems

Some properties of MIMO systems like the channel capacity
can be derived by theoretical approaches. Other properties
like the stability of adaptive algorithms under time-varying
channel conditions or the effect of finite word length im-
plementations need to be found out by running simulations.
One of the important quality measures for communication
systems is the bit error rate (BER). The number of cycles
required for the simulation of an entire BER curve can easily
be in the order of 10", Taking into account the number of
operations per cycle typical for MIMO systems, large com-
putational resources are required to run these simulations in
reasonable time. With the BEE prototyping system, it is pos-
sible to map computation intensive parts of a MIMO system
onto parallel functional units. For example, a matrix-vector
multiplication can be mapped directly onto the appropriate
number of multipliers and adders. By this direct-mapping
approach in combination with the large number of FPGAs,
the BEE system allows for simulating even complex MIMO
systems in real-time.

By connecting radio frequency (RF) front-ends to BEE,
it is possible to evaluate MIMO systems under real channel
conditions. BEE provides the necessary I/O hardware in
terms of the number of ports and the data bandwidth. The
sample rate for a system that uses 20 MHz bandwidth has to
be at least 40 MHz with I and Q channel having a resolution
of 16 bit each. A 4x4-antenna system requires 256 I/O signals
and a total bandwidth of 640 MB/s for either transmit or re-
ceive direction. A 16x16-antenna system requires 1024 1/O
signals and 2560 MB/s in either transmit or receive direction.

2.3 MIMO System Setup

Fig. 2 shows a block diagram of an NxN-antenna MIMO
system demonstrator that will be implemented using the
BEE platform. This system employs the narrow-band chan-
nels of an OFDM modulation scheme and a multiple-
antenna algorithm based on singular-value decomposition
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Figure 2: Block diagram of an NxN-antenna MIMO sys-
tem with a parallel RF front-end.
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[6]. The digital baseband processing of the transceiver, per-
formed on BEE, connects to a scaleable parallel RF front-
end with up to 16 transmit and receive antennas. First ex-
periments with narrow-band transmission systems and RF
front-ends have shown the feasibility of this approach [5].
The next step of setting up the parallel RF front-end is cur-
rently in preparation.

3. DESCRIBING DESIGNS FOR BEE

There are two basic emulation configurations for our MIMO
system as depicted in Fig. 3. The first option is to emulate
the whole transmitter-channel-receiver chain on a single
BEE unit. This approach has the advantage that the condi-
tions are very controllable and experiments can be con-
ducted with different channel models. Disadvantages in-
clude limited decoupling of the transmitter and the receiver,
not exercising the real radio front-ends, and possibly too
idealized channel models. These issues can be addressed by
using two BEE units as shown in Fig. 3b. Naturally, larger
systems could be built using multiple BEE units; four units
have been built so far.

a) Channel emulation

b) Emulation with physical radio front-ends

Figure 3: The basic conceptual emulation configurations.

3.1 Direct-mapping

Direct-mapping is a design method that simultaneously de-
scribes the functionality and the architecture utilizing blocks
of sub-designs with well-known behaviour and hardware
implementation.

Matlab Simulink [8] and Xilinx System Generator
(XSQ) [9] are used for design entry. The XSG provides a set
of blocks that can be simulated in Simulink and implemented
on a FPGA. Corresponding to the nature of Simulink simula-
tions, the blocks are a good match for datapath components.
Since the bocks include components for basic Boolean logic,
control can also be implemented. However, this is somewhat
cumbersome and, therefore, Matlab StateFlow finite state
machines are the preferred way to embed control into the
design. As seen from Fig. 2, the MIMO system to be proto-
typed is very dataflow oriented which suits the direct-
mapping paradigm.

XSG design blocks are cycle and bit-accurate represen-
tations, but the internal hardware architecture may vary in
different designs due to low-level architectural optimizations.
Utilizing direct-mapping, the implementation form typically
follows the function, which tends to result in highly parallel
architectures. Parallelism allows the designs to run on slower
clock speeds, which suits the 50 MHz platform constraint.
The relatively low frequency clock allows us to emphasize

low-power design practices and relatively straightforward
ASIC conversion without compromising the necessary
throughput.

Direct-mapped designs are easy and therefore fast to
synthesize because the designer already made many of the
architectural decisions during the design entry. Incorporated
with the parameterization property of XSG blocks, this al-
lows rapid experimentation with word-length effects of
fixed-point computations. As mentioned earlier, this is im-
portant for validating the stability of the algorithm under
realistic run-time conditions.

3.2 Coarse Partitioning and Routing

The MIMO implementation is much larger than the capacity
of a single FPGA. Therefore, the implementation must be
partitioned on multiple FPGAs. To parallel the component-
level direct-mapping, the partitioning is the responsibility of
the designer and it is achieved by grouping blocks into hier-
archical sub-designs. The two primary concerns in this proc-
ess are the amount of logic in a sub-design, which should
normally be bounded by the logic and I/O capacity of the
FPGA.

In the basic case, there are 48 signal lines between
neighbouring FPGAs on the BEE board. This FPGA-to-
FPGA routing and FPGA 1/O assignment is done automati-
cally by a dedicated program. Additional routing capacity
can be achieved by time multiplexing signals or routing them
through other FPGAs.

3.3 Extending the Blockset

The convenience of the direct-mapping method is quite de-
pendent on the suitability and completeness of the underly-
ing component library (blockset). If the desired component
does not exist in the library, either a new block must be cre-
ated or its functionality achieved by combining components
that are more primitive. These are also the primary methods
for increasing the expressiveness of the original blockset.

Sub-designs consisting of original blocks are convenient
since it is easy to examine their construction and, if neces-
sary, change the design to suit the new requirements. How-
ever, sometimes the sub-designs are so large or contain spe-
cial structures that designing a new dedicated component is
easier. An example of such a situation is a large adder tree.
The System Generator environment includes a black box
component that can be used to refer to user-defined designs
in VHDL. Synopsys’ Module Compiler is an effective way to
describe these large datapath components and the concepts
behind building a custom library are documented in more
detail in [1].

3.4 Estimation

Due to the explicit architecture in direct-mapped designs, an
experienced designer can usually estimate the design area
just by adding up the estimated areas of all the utilized com-
ponents. If the design blocks are on sufficiently high-level,
this is not an unreasonable task. Furthermore, the designer
can visually estimate the delays associated with combina-
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tional sections and use this information to balance the logic
depth between registers.

The same property allows us to estimate the design area
automatically using a separate program. Simulink-level esti-
mations are very important because they provide fast feed-
back on the feasibility of a design. The estimations are based
on the pre-characterization of each block used in the libraries.
This should be done exhaustively over all reasonable values
of the block parameters. Similarly, the delay through each
block and the energy required for the computation can be
tabulated. However, this method has its limitations. It is not
unusual for the Simulink-level estimation to be 30% off.
However, system-level estimations can be run in a matter of
minutes instead of hours or days that are typical for imple-
mentations of large designs. Although small performance
differences in estimations at this level may not be relevant or
even accurate, larger differences are useful for determining
the relative merits of designs. Alternatively, the XSG pro-
vides a native method for area estimation.

3.5 Testing Designs at Run-time

A number of options are available in run-time design testing
to trade-off measurement convenience, test repeatability, the
maturity of the components in the test setup, and other simi-
lar issues. The source of the inputs to the design is the pri-
mary distinguishing factor. If the setup is very mature and,
for example, the radio front-ends are available, the tests can
be performed with real-world I/O. If repeatable test vectors
are needed, they can be fed from mass storage devices, or a
test bench can be compiled for the emulation along with the
design under test.

As depicted in Fig. 3, the capacity of the emulator al-
lows multiple conventionally sized chips to be run in the
same emulation, for example, the interoperability of a trans-
mitter, a receiver, and a channel model can be tested. This is
very useful for initial debugging, although it is not a very
realistic operation environment, since a common clock that
can be used to reduce timing-related problems can be routed
to all parts of the design. Furthermore, modelling the channel
allows the exploration of conditions that might be physically
difficult to set up. Similarly, performance and functionality
verification can be implemented on the emulator.

Viewing the signal behaviour inside the FPGAs is possi-
ble with Xilinx ChipScope [9]. ChipScope embeds additional
logic into the designs, which mimics the functionality of a
logic analyzer. In addition, it is possible to include extra logic
to the design to monitor interesting behaviour or to store in-
termediate or final results. These methods facilitate data col-
lection over long periods of time, for example to validate
signal to noise ratios or bit error rates.

4. CONCLUSIONS

For many digital streaming applications, particularly those
that interface with radio front-ends, implementations that are
power and area efficient with real-time constraints are
needed. Meeting all these criteria with synthesis from purely
functional descriptions may not be possible and the algo-
rithm and architecture trade-offs are closely intertwined.

Direct-mapping with parameterizable components provides
a way to describe both computation and architecture simul-
taneously. As an additional benefit, synthesis from these
descriptions is fast and provides predictable results.

For rapid prototyping, enhancing the designer productiv-
ity is of primary interest. This paper concentrates on four
issues from the different stages of prototyping and details
their implementation on the BEE environment. Estimation is
crucial in early design stages to tie the algorithmic decisions
to hardware trade-offs. Design re-use is advocated by using
an extensible set of direct-mapped components. Real-time
prototyping is facilitated by the fixed wire arrangement in the
BEE emulator and the corresponding partitioning and routing
methods. Finally, the validation of designs is supported by
the rapid prototyping itself and the debugging methodology.
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