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ABSTRACT
We develop a uniform Cramer-Rao lower bound

(UCRLB) on the total variance of any estimator of an un-
known deterministic vector of parameters, with bias gradient
matrix whose norm is bounded by a constant. We consider
two different measures of norm, leading to two correspond-
ing bounds. When the observations are related to the un-
known vector through a linear Gaussian model, Tikhonov
regularization and the shrunken estimator are shown to
achieve the UCRLB. For more general models, we show that
the penalized maximum likelihood estimator with a suitable
penalizing function asymptotically achieves the UCRLB.

1. INTRODUCTION

A common approach to developing well behaved estimators
in overparameterized estimation problems is to use regular-
ization techniques, with generally measure both the fit to the
observed data and the physical plausibility of the estimate.
Often, the use of regularization can reduce the variance of
the estimator at the expense of increasing the bias, so that
the design of such estimators is typically subject to a tradeoff
between variance and bias.

We consider the class of estimation problems in which
we seek to estimate an unknown deterministic vector x0 from
measurements y, where the relationship between y and x0 is
described by the joint pdf p(y;x0) of y characterized by x0.

The total variance of any unbiased estimator of x0 is
bounded by the Cramer-Rao lower bound (CRLB) [1]. If y is
related to x0 through a linear Gaussian model, then the max-
imum likelihood (ML) estimate of x0 achieves the CRLB.
Furthermore, when x0 is estimated from independent identi-
cally distributed (iid) measurements, under suitable regular-
ity assumptions on p(y;x0), the ML estimator is asymptoti-
cally unbiased and achieves the CRLB [1].

Since estimators resulting from regularization methods
are typically biased, their variance cannot be bounded by the
CRLB. The total variance of any estimator with a given bias
gradient is bounded by the biased CRLB [2]. However, in ap-
plications it may not be obvious how to choose a particular
bias gradient. Therefore, it would be useful to have a lower
bound on the smallest attainable variance using any estimator
whose bias gradient belongs to a suitable class. A bound of
this form was first developed by Hero et al. [3] for estimating
a scalar function of a deterministic vector parameter. They
propose the uniform CRLB (UCRLB), which is a bound on
the smallest variance that can be achieved using any estima-
tor with bias gradient whose norm is bounded by a constant.

In this paper we extend the results of [3] in two ways.
First, in Section 3, we derive a UCRLB for vector parame-
ters. Specifically, we derive bounds on the total variance of
any estimator x̂ of x0, with bias gradient matrix whose norm

is bounded. We consider two different matrix norms which
lead to two lower bounds: the Frobenius norm corresponding
to an average bias gradient measure, and the spectral norm
corresponding to a worst case bias gradient measure.

Second, we develop estimators that achieve the UCRLB.
Specifically, in Section 4 we consider a linear Gaussian
model, and derive linear estimators of x0 that achieve the
UCRLB. In Section 5, we consider the case of estimating x0
from iid vector measurements, and develop a class of penal-
ized maximum likelihood (PML) estimators that asymptoti-
cally achieve the UCRLB.

Proofs of theorems, which are omitted here for brevity,
can be found in [4].

2. BIASED CRAMER-RAO LOWER BOUND

We denote vectors and matrices by boldface lowercase and
uppercase letters, respectively. The Hermitian conjugate is
denoted by (·)∗. The true value of an unknown vector (scalar)
x (x) is denoted by x0 (x0). ∂ f (x0)/∂x denotes the gradi-
ent of the function f (x) evaluated at the point x0, and is a
row vector with j element equal to ∂ f (x0)/∂x j. The gra-
dient of a vector ∂b(x0)/∂x is a matrix, with i jth element
equal to ∂bi(x0)/∂x j. The largest eigenvalue of a matrix A
is denoted by λmax(A), and N (m,C) denotes the Gaussian
distribution with mean m and covariance matrix C.

Let x̂ denote an arbitrary estimator of x0 ∈ Cm from the
observations y ∈ Cn, with bias b(x0) = E(x̂)−x0, and co-
variance Cx̂ = E {[x̂−E(x̂)][x̂−E(x̂)]∗}. Under suitable
regularity conditions on p(y;x) [1], Cx̂ must satisfy

Cx̂ ≥ (I+D)J−1 (I+D)∗ 4
= C(D), (1)

where J is the Fisher information matrix defined by

J = E

{[
∂ log p(y;x0)

∂x

]∗ [∂ log p(y;x0)
∂x

]}
, (2)

and is assumed to be nonsingular, and D is the bias gradient
matrix defined by D = ∂b(x0)/∂x.

For a given bias gradient D, the total variance that is
achievable using any linear or nonlinear estimator with this
bias gradient is bounded below by Tr(C(D)), where the total

variance ∑m
i=1 E

{
[x̂i−E(x̂i)]

2
}

is the sum of the variances in

estimating the individual components of x0. Typically, in es-
timation problems, there are two conflicting objectives that
we would like to minimize: We would like to choose an es-
timator x̂ to achieve the smallest possible total variance and
the smallest possible bias. However, generally, minimizing
the bias results in an increase in variance and vice versa. To
quantify the best achievable performance of any estimator x̂
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of x0 taking both the bias and the total variance into account,
we choose to minimize the total variance

C(D) = Tr(C(D)) = Tr
(
(I+D)J−1 (I+D)∗

)
, (3)

subject to a constraint on the bias gradient matrix D.
In our development we consider two measures of bias

gradient: an average bias gradient measure corresponding to
a weighted squared Frobenius norm,

DAVG = Tr(D∗DW) , (4)

where W is an arbitrary nonnegative definite weighting ma-
trix, and a worst case bias gradient measure corresponding to
a weighted squared spectral norm,

DWC = max
z∈Cm,‖z‖=1

z∗SD∗DSz, (5)

for some nonnegative definite matrix S.

3. VECTOR UCRLB

We first consider the problem of minimizing (3) subject to
DAVG ≤ γ . If γ ≥ Tr(W), then we can choose D =−I which
results in C(D) = 0. The average bound for the case γ <
Tr(W) is given in the following theorem.

Theorem 1 Let x0 denote an unknown deterministic vector,
let y denote measurements of x0, and let p(y;x0) denote
the pdf of y characterized by x0. Let W be a nonnegative
Hermitian weighting matrix. Then the total variance C =
C(D) defined by (3) of any estimator of x0 with bias gradient
matrix D such that Tr(D∗DW)≤ γ < Tr(W) satisfies

C ≥ α2Tr
(
(I+αWJ)−1 WJW (I+αJW)−1

)
,

where α > 0 is the unique scalar for which

Tr
(
(I+αWJ)−1 W (I+αJW)−1

)
= γ.

We next consider the problem of minimizing (3) subject
to DWC ≤ γ . If γ ≥ λ 2

max(S), then we can choose D = −I
which results in C(D) = 0. In the general case, the worst-
case bound can be found as a solution to a semidefinite pro-
gramming problem [5], which is a convex optimization prob-
lem that can be solved very efficiently.

Theorem 2 Let x0 denote an unknown deterministic vector,
let y denote measurements of x0, and let p(y;x0) denote the
pdf of y characterized by x0. Let S be an arbitrary non-
negative definite matrix. Then the total variance C = C(D)
of any estimator of x0 with bias gradient matrix D such that
maxz∈Cm,‖z‖=1 z∗SD∗DSz≤ γ < λ 2

max(S) satisfies C≥Cmin
where Cmin is the solution to the semidefinite program

Cmin = min
t,D

t

subject to
[

t g∗
g I

]
º 0,

[
γI SD∗
DS I

]
º 0,

with g = vec(J−1/2(I+D)∗).
If S = ∑m

i=1 βiqiq∗i for some βi > 0, where qi are the
eigenvectors of J, then

Cmin = Tr
((

I−√γS−1)2
PJ−1

)
.

Here P = ∑i:β 2
i >γ qiq∗i is the orthogonal projection onto the

space spanned by the eigenvectors of S corresponding to
eigenvalues β 2

i > γ . If, in addition, S = I, then

Cmin = Tr
(
(1−√γ)2J−1) .

Theorems 1 and 2 characterize the smallest possible to-
tal variance of any estimator with bias gradient matrix whose
norm is bounded by a constant. However, the theorems do
not guarantee that there exists estimators achieving these
bounds. In the next section we show that in the case of a
linear Gaussian model, both bounds are achievable using a
linear estimator. In Section 5, we consider more general, not
necessarily Gaussian models, and develop a class of estima-
tors that asymptotically achieve the UCRLB.

4. LINEAR GAUSSIAN MODEL

Consider the estimation problems represented by the model

y = Hx0 +n, (6)

where x0 ∈ Cm is an unknown deterministic vector, H is
a known n×m matrix with rank m, and n ∈ Cn is a zero-
mean Gaussian random vector with positive definite covari-
ance Cn. For this model, the Fisher information matrix is

J = H∗C−1
n H

4
=Q.

It is straightforward to show that the estimator

x̂ =
{

(WQ+δI)−1WH∗C−1
n y, γ < Tr(W);

0, γ ≥ Tr(W), (7)

where the regularization parameter δ > 0 is chosen such that
Tr

(
(I+(1/δ )WQ)−1W(I+(1/δ )QW)−1

)
= γ , achieves

the average UCRLB of Theorem 1, so that among all esti-
mators with bias gradient D satisfying Tr(D∗DW)≤ γ , this
estimator results in the smallest possible total variance. Note,
that the estimator x̂ of (7) is equal to the Tikhonov regular-
izer [6], which is widely used for solving inverse problems
and ill-conditioned least-squares problems.

Similarly, among all estimators with bias gradient D sat-
isfying z∗SD∗DSz ≤ γ < λ 2

max(S) for all z ∈ Cm such that
z∗z = 1, where S is a positive definite matrix that commutes
with Q and has eigenvalues βi, the estimator that results in
the smallest possible total variance is

x̂ =
{

(I−√γS−1)PQ−1H∗C−1
n y, γ < λ 2

max;
0, γ ≥ λ 2

max,
(8)

where P is an orthogonal projection onto the space spanned
by the eigenvectors of S corresponding to eigenvalues β 2

i >
γ . The estimator x̂ of (8) with S = I is equal to the shrunken
estimator proposed by Mayer and Willke [7], which is sim-
ply a scaled version of the least-squares estimator. For more
general choices of S, the estimator of (8) can be viewed as a
generalization of the shrunken estimator.
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5. ASYMPTOTIC OPTIMALITY OF PML
ESTIMATION

In general, there is no guarantee that an estimator achieving
the UCRLB exists. We have seen that for the linear Gaussian
model, the average UCRLB is achieved by Tikhonov regular-
ization, which also maximizes the penalized log-likelihood
function p(y;x)−βx∗Wx, where p(y;x) ∼N (Hx,Cn).
A similar result holds for the shrunken estimator.

We now demonstrate that this optimality property of the
PML estimator is more general. Specifically, we show that
the PML estimator asymptotically achieves the UCRLB for
many other statistical models. To this end, we first develop
the asymptotic bias and variance of the PML estimator for a
general class of penalizing functions. We then show that in
many cases we can choose the penalizing function such that
the PML estimator asymptotically achieves the UCRLB.

5.1 Asymptotic Properties of the PML Estimator

The PML estimate of x0, denoted x̂PML , is chosen to
maximize the penalized log-likelihood log p(y;x)−βR(x),
where β > 0 is a regularization parameter, and R(x) is a pe-
nalizing function. Although many different choices of R(x)
have been proposed in the literature [8, 9], no general asser-
tions of optimality are known for these different choices.

In the case in which we estimate x0 from N iid (vector)
measurements y1, . . . ,yN , x̂PML is chosen to maximize

PL(x) =
N

∑
i=1

log p(yi;x)−βNR(x), (9)

where βN is a regularization parameter that may depend on
N. In our derivations, we assume that βN/N → β0 for some
constant β0 as N → ∞. Under suitable regularity conditions,
we have the following theorem:

Theorem 3 Let x0 denote an unknown deterministic vector,
let y1, . . . ,yN denote N iid measurements of x0, and let x̂PML

denote the PML estimator of x0 from y1, . . . ,yN that maxi-
mizes the penalized log-likelihood (9). Then,
√

N(x̂PML − x̌) a∼
N

(
0,(J(x̌)+β0M(x̌))−1 C(x̌)(J(x̌)+β0M(x̌))−1

)
,

where β0 = limN→∞ βN/N,

x̌ = argmax{E {log p(y;x)}−β0R(x)} ;

C(x̌) = cov
{

∂ log p(y;x̌)
∂x

}
;

J(x̌) =−E
{

∂ 2 log p(y;x̌)
∂x2

}
;

M(x̌) = ∂ 2R(x̌)
∂x2 .

5.2 The PML Estimator and the UCRLB

From Theorem 3, the asymptotic total variance of x̂PML is

1
N

Tr
(
(J(x̌)+β0M(x̌))−1 C(x̌)(J(x̌)+β0M(x̌))

)
, (10)

and the asymptotic bias gradient is DPML = ∂ x̌/∂x0 − I,
where differentiating the expression for x̌ we have that

∂ x̌
∂x0

= (J(x̌)+β0M(x̌))−1 ∂
∂x0

E

{
∂ log p(y; x̌)

∂x

}
. (11)

With γ = D∗
PMLDPML , it follows from Theorem 1 that the

total variance of any estimate of x0 with bias gradient D such
that Tr(D∗D)≤ Tr(D∗

PMLDPML) satisfies

C ≥ α2

N
Tr

(
(I+αJ1)

−2 J1

)
, (12)

where α > 0 is chosen such that

Tr
(
(I+αJ1)

−2
)

= Tr

((
∂ x̌
∂x0

− I
)∗( ∂ x̌

∂x0
− I

))
, (13)

and

J1 = E

{(
∂ log p(y1;x0)

∂x

∗ ∂ log p(y1;x0)
∂x

)}
, (14)

is the Fisher information from a single observation. There-
fore, if we can choose R(x) such that (10) is equal to
the bound in (12), then the corresponding PML estimator
achieves the UCRLB with average bias constraint. Similarly,
from Theorem 2, the variance of any estimate of x0 with bias
gradient D such that ‖D‖2 ≤ ‖DPML‖2 satisfies

C ≥ 1
N

Tr

((
1−

∥∥∥∥
∂ x̌
∂x0

− I
∥∥∥∥
)2

J−1
1

)
, (15)

so that if we can choose R(x) such that (10) is equal to
the bound in (15), then the corresponding PML estimator
achieves the UCRLB with worst-case bias constraint.

To develop intuition into the optimal choice of R(x), we
consider estimating a scalar x0 from N iid measurements.

Theorem 4 Let x0 denote an unknown deterministic param-
eter, let y1, . . . ,yN denote N iid vector measurements of
x0, and let x̂PML denote the PML estimator of x0 from the
measurements y1, . . . ,yN that maximizes the penalized log-
likelihood with penalizing function R(x). Then x̂PML asymp-
totically achieves the UCRLB if and only if R(x) is chosen
such that

(
1−

∣∣∣∣
∂ x̌
∂x0

−1

∣∣∣∣
)2 1

J1
=

C(x̌)
(J(x̌)+β0M(x̌))2 .

In addition, if ∂ x̌/∂x0 ≤ 1, then x̂PML asymptotically achieves
the UCRLB if and only if R(x) is chosen such that

∂ log p(y; x̌)
∂x

−E

{
∂ log p(y; x̌)

∂x

}
= c

∂ log p(y;x0)
∂x

, (16)

for some deterministic constant c.

In many cases, the condition (16) is satisfied for all R(x),
so that any R(x) such that ∂ x̌/∂x≤ 1 is asymptotically opti-
mal. For example, suppose we are given measurements yi =
m+σ0ni,1≤ i≤ N, where the mean, m, is a known length-
n vector, ni are iid random vectors with n1 ∼N (0,I), and
σ0 is unknown. Then,

∂ log p(y; σ̌)
∂σ

=− n
σ̌

+
1

σ̌3 (y−m)∗(y−m). (17)

Since E {(y−m)∗(y−m)}= nσ2
0 , we have that

∂ log p(y; x̌)
∂ x

−E

{
∂ log p(y; x̌)

∂ x

}
=

σ̌3

σ 3
0

∂ log p(y;x0)
∂ x

,

(18)
so that (16) is satisfied for all R(x). The same conclusion
holds when estimating m, assuming σ0 is known. Another,
non-Gaussian example, is considered in the next section.

615



6. EXAMPLE

Consider the case in which we are given N scalar iid mea-
surements y1, . . . ,yN of an exponential random variable with
unknown mean 1/x0 > 0, so that

p(yi;x0) = x0e−yix0 , 1≤ i≤ N. (19)

The PML estimate x̂PML with penalizing function R(x) is
given by the value of x that maximizes

PL(x) = N logx− x
N

∑
i=1

yi−βNR(x), (20)

for some βN > 0 such that βN/N → β0 as N → ∞. We seek
a penalizing function R(x) that is optimal in the sense that
the resulting estimator asymptotically achieves the UCRLB.
(Note that in the scalar case, the average and worst-vase
UCRLBs coincide.)

We can immediately verify that

∂ log p(y; x̌)
∂x

−E

{
∂ log p(y; x̌)

∂x

}
=

∂ log p(y;x0)
∂x0

, (21)

so that from Theorem 4 it follows that for any choice of R(x)
such that ∂ x̌/∂x0 ≤ 1, the resulting PML estimator asymp-
totically achieves the UCRLB, where in this case

∂ x̌
∂x0

=
1/x2

0

1/x̌2 +β0M(x̌)
. (22)

Note, however, that for finite values of N, the performance
of the PML estimator will depend on the specific choice of
penalizing function R(x).

If ∂R(x̌)/∂x,∂ 2R(x̌)/∂x2 ≥ 0, then

1
x̌

=
1
x0

+β0
∂R(x̌)

∂x
≥ 1

x0
, (23)

so that ∂ x̌/∂x0 ≤ 1, and the PML estimator is optimal. As
an example, suppose that R(x) = x. Then the resulting PML
estimator is

x̂PML =
N

∑N
i=1 yi +βN

. (24)

Since ∂R(x̌)/∂x = 1≥ 0 and ∂ 2R(x̌)/∂x2 = 0, it follows that
the estimator of (24) asymptotically achieves the UCRLB.

As another example, suppose that R(x) = logx. In this
case, x̌ = (1−β0)x0, so that from (22),

∂ x̌
∂x0

=
1/x2

0

(1−β0)/x̌2 = 1−β0 ≤ 1. (25)

We therefore conclude that the resulting PML estimator,
given by

x̂PML =
N−βN

∑N
i=1 yi

, (26)

asymptotically achieves the UCRLB.
In Fig. 1 we plot the UCRLB and the estimated variance

of the PML estimators (24) and (26) as a function of the
estimated squared bias gradient, for N = 30. The variance
and the squared bias gradient of the estimators are computed
using the method described in [3]. As we expect from our
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Figure 1: Performance of the PML estimators (24) (denoted
“1”) and (26) (denoted “2”) with N = 30, in comparison with
the UCRLB.

analysis, for increasing values of N the variance of both esti-
mators approaches the UCRLB. Note, however, that in sim-
ulations it has been observed that for small values of N, the
performance of the two estimators is different. In particular,
simulations show that the estimator given by (24) results in
a smaller variance than the estimator given by (26) for finite
values of N.
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