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ABSTRACT

In linear equalization, time lag is an important parameter that
significantly influences the performance. Only with the op-
timum time lag that minimizes the minimum-mean-square-
error (MMSE), can we have best use of the available re-
sources. Many designs, however, choose the time lag either
based on pre-assumption of the channel or simply based on
average experience. In this paper, we propose a novel vari-
able time lag algorithm with the concept of pseudo fractional
time lag. The proposed algorithm can converge to the opti-
mum time lag in the mean and is verified by the numerical
simulations provided in this paper.

1. INTRODUCTION

The finite impulse response (FIR) equalizer is widely used in
digital communications to combat intersymbol interference
(IST). The basic structure of the FIR equalizer is shown in
Figure 1, where x(n) is the information signal, H(z) is the
channel transfer function, r(n) is the channel noise, y(n) is
the received signal, A is the time lag, d(n) = x(n — A) is the
reference signal, z(n) is the equalization output, e(n) is the
error signal, and W (z) is the transfer function of the equal-
izer. The FIR equalizer is usually implemented on a tapped-
delay-line (TDL) structure with tap coefficients updated by
adaptive algorithms such as least mean square (LMS) or re-
cursive least square (RLS) algorithms [1].
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Figure 1: The adaptive MSE equalizer.

To preserve the causality of the FIR equalizer, the time
lag, or the decision delay, is introduced. The value of the time
lag must be carefully chosen as it significantly influences the
equalization performance. Only if the time lag is set as the
optimum value that minimizes the MMSE, can we have best
use of the resources once the structure of the adaptive equal-
izer is fixed. In many applications, however, the time lag
is chosen based on either the pre-assumption of the channel
or simply from experience. For instance, in an experiment
shown in [1, Section 9.7], the channel impulse response was
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assumed to be symmetric and the time lag was set equal to
half of the tap-length plus the delay of the strongest pulse of
the channel impulse response. Obviously this method can not
be generalized. For example, for a minimum phase channel
where all zeros of the transfer function are inside the unit cir-
cle, the value of the optimum time lag is usually zero, while
for a maximum phase channel where all zeros are outside
the unit circle, the optimum time lag is about equal to the
tap-length minus one. Generally, even with accurate channel
estimation, it is still not straightforward to set an appropriate
time lag. It is therefore desirable to derive an algorithm that
can automatically find the optimum time lag. Unfortunately,
there are only a few papers in the literature regarding this
topic, a typical example of which is [2], where the time lag
was included as an explicit parameter for the decision feed-
back equalizer (DFE) and a brute force searching method
was proposed to determine the optimum time lag based on
calculating the DFE performance for every possible time lag.
However, this algorithm requires a priori knowledge of the
channel and suffers from high computational complexity es-
pecially when the tap-length is long, making it inefficient to
apply. Some other papers, e.g. [3, 4, 5], investigated the time
delay for multichannel equalizers. The results, however, can
not be applied to traditional equalizers.

This paper proposes a novel variable time lag algo-
rithm. The proposed algorithm is based on the observation
that though the closed-form for the minimum-mean-squared-
error (MMSE) function with respect to the time lag is diffi-
cult, if not impossible, to obtain, the relationship between
the MMSE and time lag can be revealed in an ad-hoc man-
ner since the time lag is only a one dimensional parameter.
Moreover, although the time lag must be an integer, we can
apply the concept of the pseudo fractional lag to make in-
stantaneous adaption possible, where the true time lag is the
integer part of the fractional lag.

2. TIME LAG ADAPTATION

In this section, we describe the variable time lag algorithm in
detail. First, the algorithm basis is introduced, followed by
the description of the full algorithm. Finally some variants
of the algorithm are presented.

2.1 Basic algorithm

The optimum time lag A, is a function of the channel spec-
ification and the equalizer tap-length. As the time lag A is
set away from A,, the MMSE tends to increase. Generally,
the MMSE is a convex function of A, though there may exist
local minima.
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If the MMSE is known for all lags, A, can be searched by
traditional one-dimensional searching methods. In practice,
unfortunately, the MMSE is usually not available but may be
estimated by the exponential average:

E(n) =A&(n—1)+(1-2)e*(n), Q)

where A is a forgetting factor which is set close to one.
Defining &y as the pseudo time lag which can take frac-
tional non-integer values, we have the following adaptation

rule: - -
Op(n+1)=0(n)+B-[&—&(n)], )
where the true time lag A(n) = | 8¢(n) ], | .| truncates the em-

braced value to the nearest integer, &, is the estimated con-

verged MSE for the previous lag A(n — 1), &(n) is obtained
by (1), and 3 is the step-size for d,(n) adaptation.

Initially we set &, = &7 and A(0) = 7(0) = A, where
P > & forall Al and Ay < D, (e.g. Ay = 0). Then Or(n)
starts to increase from A,. Only at the so-called changing
time that |8y(n) — A(n)| > 1, the true lag is increased by one,
otherwise it remains unchanged.

Starting at one changing time, the filter converges to-
wards the MMSE corresponding to the new lag. If B is

small enough, we can have E[£ ()] = & 5,(»)| before the next

changing time, where &x is the MMSE when the time lag is
A. Then taking expectations on both sides of (2) gives:

E[8/(n+1)] =E[dr(n)]+ B+ [€5,(m))-1 — &l5;m)]|» ()

where n corresponds to the converged periods of the adaptive
filter. It is clear from (3) that E[d/(n)] keeps increasing until

(note A(n) = [ ¢ (n))):
énin—1) — €am) < 0. “)

The time lag can only be increased by (2). Similarly we
can also construct a recursion to decrease the lag which is
given by:

S(n+1)=08/(n)—B-[&—E(n)], 5)

where the true tap-length A(n) = [&7(n)] + 1. Initially we
set A(0) = 07(0) = A, which is an integer bigger than A,
and &, = & which is same as that for (2). Then &7(n) starts
to decrease from Ap. The changing time is also defined as
the time when |07(n) —A(n)| > 1, at which we let &, = & (n).
Similar to the analysis for (2), we have that if 3 is small
enough, E[d/(n)] keeps decreasing until:

éa(n—1) — $a@m) > 0. (6)

It is clear from (4) and (6) that if there are no suboptima,
both (2) and (5) can converge to A, in the mean. However,
some systems may have sub-optima lag. Fortunately, both
(2) and (5) are adapted based on the instantaneous values of
& (n), the variance of which can be regarded as a random dis-
turbance to the search procedure. If such disturbance is much
larger than the variation of the sub-optima, the search algo-
rithm can escape from the sub-optima. In some applications,

For example, we can set & = 1 if the desired signal’s power is normal-
ized to one.

however, it may take too long for the search to go through
the sub-optimum, if it does at all. In such cases, we may
increase the adjusting step-size of the lag, i.e. adjust A by
the value of K at every changing time, where K is an integer
larger than one. Then the tap-length adaption converges to a
biased value within a range which is centered at A, and has
length of K. We have done extensive simulations to show
that unless the tap-length is very short, there are generally no
sub-optima or the variation of the sub-optima is small.

2.2 Algorithm principle

In (2) and (5), at every time that the true lag changes, there
may be a sudden rise of the MSE before it eventually con-
verges to the new MMSE. This forces us to choose a very
small B to ensure the convergence of &(n), which however
implies a slow search rate. To suppress such a MSE rise, we
can shift the tap-vector when the time lag changes. Specifi-
cally, assuming the optimum tap-vector for the time lag A is
w, when the time lag is changed to A, w is shifted as:

. o [0,---,0,w(0),--- ,w(N — 8] — 1)]", ifd >0,
shlft(W){ w(]8]),-- ,w(N—1),0,---,0]", ifd <0

(M

where & = Ay — A and w(i) is the ith coefficient of w.

Another problem of (2) and (5) is that they can only
search for the lag in one direction. Therefore unless 3 is
very small which leads to slow convergence rate of &7(n), the
search may fail due to the inaccurate estimate of the MMSE.
Fortunately, because they differ only by a sign factor in the
recursion, (2) and (5) may be merged into one recursion and
applied simultaneously, by which a more robust and faster
tap-length adaption can be obtained.

With these observations and the analysis, we have the
full variable time lag algorithm as below.

Foreveryn=1,23,...
E(n)=A&(n—1)+(1-2A)e*(n)
Sr(n+1) = ¢(n)+ B y[& — &(n)] ®)
6f(n+ 1) = |5f(l’l+ 1)|N71
IF16/(n)~Bm)| >K
A(n) = (07(n)), & =& (n)

op=A(n)—A(n—1), y=sign(dp)
shift the tap-vector w based on (7)
End
If |87(n) —A(n)| <K
A(n)=A(n—1)
End

In the above procedure, the true lag A(n) = (d7(n)),
where (.) rounds the embraced value to the nearest integer;
Or(n+1) = |8p(n+1)|y—1, where |.|y_; is a limiter that
constrains the embraced value in the range of [0, N — 1] in
which A, lies if the tap-length N is long enough; K is the
step-size for the lag adjustment, which is set according to the
suboptimum and the system requirements; Y is called the di-
rection factor, with which (2) and (5) are merged into one
recursive equation. Specifically, at the changing time n, if
A(n) —A(n—1) > 0, we have y =1 and (2) is actually ap-
plied, otherwise we have y = —1 and (5) is used. Therefore
even if the lag adapts in the wrong direction due to the in-
stantaneous values of & (n), the algorithm can automatically
draw it back to the right direction.
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Without a priori knowledge of the channel, initially we
may set §p =1, y =1 and A(0) = | N/2] which might be a
good guess of the optimum time lag. Then the first change
of the lag is to be increased by K. Furthermore, to ensure
stability, initially the adaptation of the time lag should not
begin until the tap-vector has converged.

2.3 Algorithm variants

If the tap-length is long enough, there may exists a flat area
around A, in the curve of MMSE with respect to A, i.e. the
MMSE difference are trivial for those time lags within the
flat area. Obviously in practice, it is more appropriate for the
algorithm to converge to the smallest lag in the flat area rather
than A,. However, the proposed adaptive lag algorithm may
converge to any value within the flat area. Using the similar
philosophy to the leaky LMS algorithm, we can introduce a
leaky factor to keep the lag search algorithm from entering
the large values in the flat area. To be specific, the recursive
equation of (8) is modified as:

S(n+1)=(1—0a)-8n) +By[&—Em], ()

where a is the so-called leaky factor which is a small positive
constant less than one. To ensure stability, we should let o <
B.

In many applications, the power of the reference signal
is always normalized to one, implying that the MMSE is
usually smaller than one and is thus better represented in a
logarithmic scale than in a linear scale. In such cases, the
adaptation rule of (9) may further be modified as:

Or(n+1)=(1—0a)ds(n)+pB y[loggp —logf(n)] . (10)

3. NUMERICAL SIMULATIONS

In this section, we apply the proposed lag algorithm to the
adaptive MSE equalizer as shown in Figure 1, where we
assume the transmitted signals x(n) are either +1 or —1
(BPSK) and are independent of each other, the channel SNR
is 20dB and the tap-length of the equalizer is set at N = 16.
In all the simulations below, the normalized LMS [1] is used
for tap adaption with step-size 0.4, the recursion rule (10)
is used for the lag adaptation where K = 1 and initially
A(0) = [N/2], &p =1 and y = 1. Based on experiments,
we choose B = 0.3 and a = 0.00025 for all the simulations
in this section. The adaptation of 8;(n) begins after n = 100.

3.1 Mixed-phase channel

First, we examine the mixed-phase channel which has zeros
both in and outside the unit circle. The channel vector is set
ash(n)=[-0.1 —0.30.410.40.3 —0.1]". The curve of the
MMSE with respect to the lag is shown in Figure 2, where
we can clearly observe that the optimum lag A, can be either
10 or 11 which corresponds to similar MMSE performance.

Before simulating the proposed lag algorithm, we firstly
examine the effect of the tap-vector shift on (7). The results
are shown in Figure 3, where the time lag is firstly fixed at
6 and later increased to 7 after symbol 400, and the curves
are obtained by averaging over 30 independent runs. We
can clearly observe that if the tap-vector w(n) remains un-
changed when the lag changes (i.e. without w(n) shift), there
is a sharp rise in the MSE learning curve at symbol 400, but
the shift of w(n) can effectively suppress that rise.
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Figure 2: The function of MMSE with respect to the lag for
the mixed-phased channel.
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Figure 3: The function of MMSE with respect to the lag for
the mixed phased channel.

The learning curves of the MSE and &y(n) for the pro-
posed time lag algorithm are shown in Figure 4 (a) and (b)
respectively, where both curves are for one typical simula-
tion run, and Figure 4 (a) is obtained by averaging the MSE
learning curve with a rectangular smoothing window of size
50. It is clearly shown in Figure 4 (b) that 8(n) converges to
around the optimum time lag.

3.2 Minimum phase and maximum phase channels

In this example, we consider the minimum phase and maxi-
mum phase channels. To be specific, the channel vectors are

set as:
h(n) = [l 0.80.60.40.30.2 0.1]T

11
h(n) =1[0.10.20.30.40.60.8 1] (ah

respectively. The curves of the MMSE function with respect
to the time lag are shown in Figure 5, where the flat area can
be clearly observed in both curves. Although all time lags
on the flat area correspond to similar MMSE, it is obvious
from Figure 5 that the ideal time lags are 0 and 15 for the
minimum and maximum phase channels respectively.

The learning curves of the MSE and &7(n) for the min-
imum and maximum phase channels are shown in Figure 6
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Figure 4: Learning curves of the MSE and time lag for the

mixed phase channel.
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Figure 5: The functions of MMSE with respect to the lag for
the minimum phase and maximum phase channels.

and 7 respectively. Similar to those in Figure 4, all curves
are based on one typical simulation run, Figure 6 (a) and 7
(a) are obtained by averaging the MSE learning curve with a
rectangular smoothing window of size 50. Clearly d,(n) for
both channels converge to around the ideal time lags. Partic-
ularly in Figure 6 (a), we can observe an obvious rise around
symbol 500 in the MSE learning curve. This is because the
first change of the time lag initially drives the search in the
wrong direction away from the ideal lag.

4. CONCLUSIONS

This paper proposed a novel variable time lag algorithm
which can converge to the optimum lag in the mean. Since
the proposed variable tap-length algorithm is based on gra-
dient search, the extra complexity added to the basic LMS

algorithm is low. Finally computer simulations were given to
verify the proposed algorithm.
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