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ABSTRACT

A broad class of nonlinear systems can be modelled by
the Volterra series representation. However, its practical use
in nonlinear system identification is sometimes limited due to
the large number of parameters associated with the Volterra
filters structure. This paper is concerned with the problem
of identification of third-order Volterra kernels. A tensorial
decomposition called PARAFAC is used to represent such
a kernel. A new algorithm called the Alternating Recursive
Least Squares (ARLS) algorithm is applied to identify this
decomposition for estimating the Volterra kernels of cubic
systems. This method significantly reduces the computa-
tional complexity of Volterra kernel estimation. Simulation
results show the ability of the proposed method to achieve a
good identification and an important complexity reduction,
i.e. representation of Volterra cubic kernels with few param-
eters.

Keywords : Nonlinear system identification, Volterra
models, tensors, PARAFAC models.

1. INTRODUCTION

The identification of nonlinear dynamical systems from a
given input output data set has attracted considerable interest
since many physical systems exhibit nonlinear characteris-
tics. The Volterra model structure can be used to represent a
broad class of nonlinearities. The output of a third-order, ho-
mogeneous, discrete-time, time invariant, truncated Volterra
cubic filter with input sequence u(k) is given by :

y(n) = il
xu(n —nz) (nfn3) €))

where {hnl nons } are the coefficients of the Volterra cubic ker-
nel. In practice, the infinite sum in (1) may be truncated to
a finite number if the system has fading memory [1]. It has
been shown in [1] that any time-invariant nonlinear system
with fading memory can be well approximated by a finite
Volterra series representation to any precision. Hence, the
class of truncated Volterra series model is attractive to use in
nonlinear system identification.

Volterra filters are very simple to use and have nice prop-
erties. For instance, they are linear in their parameters and
hence standard and well-behaved parameter estimation tech-
niques can be used. However, the large number of parame-
ters associated with the Volterra models limit their practical
utility to problems involving only modest values of memory.
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This limitation arises because the identification of the large
number of parameters may be problematic, but also design
procedures based upon such models may be cumbersome.
To eliminate this drawback, two ways can be followed :

e to arrange the kernel coefficients in matrices that are de-
composed in applying a reduced order Singular Value
Decomposition (SVD) which leads to a low complexity
parallel-cascade realization of the Volterra filter [9],

e to expand the kernel on an orthonormal basis such as
the Laguerre functions basis ([2],[4]) or Generalized Or-
thonormal Bases (GOB) ([5],[7]).

The purpose of this paper is to develop reduced complex-
ity third-order Volterra models identified by means of the Al-
ternating Least Squares (ALS) and the Alternating Recursive
Least Squares (ARLS) methods.

Third-order Volterra kernels can be considered as third-
order tensors. So, we apply a tensor decomposition called
PARAFAC to represent Volterra cubic kernels. The corre-
sponding reduced complexity Volterra model called PARA-
FAC-Volterra model is presented in section 2. A new Al-
ternating Recursive Least Squares (ARLS) algorithm to esti-
mate the parameters of such Volterra models is presented in
section 3. In section 4, we evaluate the performance of this
new approach by means of simulations before concluding in
section 5.

2. THE PARAFAC-VOLTERRA CUBIC MODEL

The PARAFAC (PARAllel FACtor) also called CANDE-
COMP (CANonical DECOMPosition) was introduced by
Harshman (1970) [6] and by Caroll and Chang (1970) [3] in
order to reduce the complexity of an N order tensor. This
decomposition entirely preserves the information contained
in the original tensor.
Before defining the PARAFAC model of a third-order
(N1 X N, x N3) tensor H, we define the following matrices :
e H,  (n =1,...,Np) are (N, x N3) matrices such as
Hy, . (na,n3) = H(ny,na,n3).
e Hy, (np=1,...,N2) are (N3 x Ni) matrices such as
H.nz.(n37nl) = H(nl an23n3)‘
e H,, (n3=1,...,N3) are (N; x N») matrices such as
H ,,(n1,n2) = H(ny,n2,n3). U
The construction of the matrices Hy,.., H ,,. and H_,, is de-
scribed in figure 1.
We also define the unfolded matrices Hy,xn,n;s
Hy, xnn; and Hy, « v, n, of the tensor H as :
[Hi H

HN] XNo N3 = HN% ] (2)
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Figure 1: H,, ., H,, and H ,, construction

[ H.. H>. --- Hy,. ] 3)

Hy,xnn, = [ Hio Ho, Hy,. | “4)
The PARAFAC model of a third-order (N x N, x N3) tensor
H is defined by three matrices A, B and C with respective

dimensions (N} X P), (N, x P) and (N3 x P). The scalar rep-
resentation of the model is written as :

Hpy, xvi vy

P n=1,...,N;
hn1n2n3 Z anlp nypCmzp 5 N2 = 1 .. 7N2 5)
p=1 n3 = 1 N3

where 71, nyn, 18 the element (n1,n2,n3) of the tensor H, a,, p,
the element (n;, p) of the matrix A, by, ,, the element (ny, p)
of the matrix B, ¢, p, the element (n3, p) of the matrix C and
P is the number of the PARAFAC model factors.

The determination of P is directly related to the rank
of the tensor H. Kruskal [8] defined the number of the
PARAFAC model factors P as :

} (6)

From the scalar representation (5) of the PARAFAC mo-
del, we can write its matrix representation using the matrices
Hnl.., H.nz. and H..n3 :

rank(Hy, xn,n;),
P > rank(H) = max< rank(Hy,xnn;),
rank(Hy, xn,N,)

H,,. = BD)C" withD) =diag(A,.) (1)
H,, = CDSA"withD} =diag(B,,)  (8)
H,, = ADSB' withDS =diag(C,.) (9

where, (Ay,. ) (By,.) and (Cy,.) are respectively the nl!, the
n' and the n’ " row of the matrices A, B and C. DC is the (P x
) diagonal square matrix the diagonal elements of which are
the elements of the row vector (C,.).
Using the scalar representation of the PARAFAC model,
the output of the truncated Volterra model in equation (1) can
be written as follows :

M M M
yn) = Z] Zl Zl <Za”llP "2Pc"3P> X
u(n—ny)u(n—ny)u(n —n3) (10)

I
=
N
Ms
8
S

u(n—n1)>
nyi=1

M
Z by, pu(n— n2)>

Vl2:l

M
Z cn3pu(nn3)> an
n3=1

X X
N N

The input/output relation (11) can be implemented in us-
ing a parallel-cascade structure, as shown in figure 2.
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Figure 2: A parallel-cascade structure realization of the

PARAFAC-Volterra cubic model

In figure 2, U(n) = [ u(n—1) u(n—M) ]T, A,
B ; and C represent respectively the i column of A, the j"
column of B and the k" column of C, and the boxes of stage
p design the convolution operations U (n)A ,, UT (n)B., and
Ut (n)C,p.

The PARAFAC decomposition has the properties to be
unique and applicable to any tensor. The Volterra cubic ker-
nel in (1) can be viewed as a third-order (M x M x M) tensor
with a complexity Cyangara = M° in terms of its coefficients
number.

The PARAFAC-Volterra complexity is Cparafac = 3MP.
So, the Ratio of Complexity Reduction (RCR) using PARA-
FAC with respect to the standard Volterra cubic model is
RCR = 3M P — 31;. When P < M, a significant complexity
reductlon can be achieved.

From the RCR, we can conclude that a complexity reduc-

. . . 2
tion is possible when P < A%

3. THE ARLS ALGORITHM

This algorithm uses the scalar representation of the PARA-
FAC model given by (5) and is based on an alternating pro-
cedure. It updates the matrices A, B and C by minimizing the
following cost function 7 :

- il@(r) 502 (12)

where y(n) denotes the output of the Volterra system and y(n)
denotes the output of the model based on the PARAFAC de-
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composition and defined in (11). Let :

M M
o) (n) = Zlbnzpu(n—nz) Z,f’“"“(”‘”” (13)
W W
oF(n) = Zlan,pu(n—nl)Zlanpu(n—n3> (14)
u w
(ppc(n) = Zlan]pu(n—nl)Zlbnzpu(n—nz) (15)
Pan) = [ otn) @t(n) - efn) ] 16)
Pp(n) = [ of(n) @F(n) - oE(m) )" (7
@cn) = [ o) ¢S(n) - @S ]" (18)

and
Un)=1[ u(n—1) u(n—m) 1" (19)

By supposing that the matrices B and C are known, equation
(11) is then written as follows :

P M
yn) =Y Zlanlpu(n—m)wﬁ(n) (20)
p=ln=
P
Z’](alpu(n—1)+a2pu(n—2)—|—-~~
o
- appu(n—M)) @y (n) @1
= (allu(n—1)—|—~~-—|—aM1u(n—M))(p’14(n)
+ o (22)
+ (arpu(n—1)+ -+ aypu(n — M) @5 (n)
= (vec(A)) ®a(n)@U(n) (23)
Py(n)
= Pl(n)vec(A) (24)

and the cost function 71 (n) becomes :
n

ma(n) = Y () - PY (1) vee(A))? (25)

=1
By minimizing 14 (n) with respect to the matrix A we get
the following estimated solution in the recursive least squares
(RLS) sense :
vec(A(n)) = vec(A(n— 1))+ Ka(n)ea(n) (26)
where
y(n) — P} (n)vec(A(n—1))  (27)
—1)P,
Ka(n) = —2aln= DB 28)
1 +PA (n)QA(n— 1)PA(I’Z)
Qa(n) = [=Ka(m)P{(]Qa(n—=1) (29
Similarly, by supposing known respectively the matrices

A and C and the matrices A and B, the cost function 1 (n) is
written :

€A (I’l) =

()= PE()vec(B)]  (30)

=
o]
—
S
5
I

- 1M

y(6) = PE()vec(©)]” (31

..
Il
_

1. Initialization
e A(0), B(0) et C(0).
® 04(0) = 0B(0) = Oc(0) = Iyp.

2. Updating of the PARAFAC components
e Calculate P4 (n), Pg(n) et Pc(n)
ea(n) = y(n) — Py (n)vec(A(n—1))
* 4 &5(n) =y(n)—P; (n)vec(B(n—1))
) = y(n) = P (n)vee(C(n—1))
n) = Op(n—1)Py(n)
1+P] (n)Qa (n—1)Pa ()
n) = Op(n—1)Pp(n)

T 1+PF (n)Qp(n—1)Pg(n)
_ Oc(n=1)Fc(n)

3. Reconstruction of the cubic kernel

~ P - n=1,....M
* h”ln2”3 = Z a’llpbnzpcn3p; ny = 1,...7M
p=1 n3=1,....M

4. Go back to step 2 until convergence of the

algorithm

Table 1: The ARLS algorithm

where Pg(t) and Pc(t) are constructed in a same manner as
Py (t)

By alternatively minimizing the cost functions 14, Np
and 1¢, we update the estimated matrices A, B and C that are
used to represent the PARAFAC-Volterra cubic model. The
equations of the corresponding algorithm called Alternating
Recursive Least Squares algorithm (ARLS), are summarized
in table 1.

4. SIMULATION RESULTS

u(n)

7

PARAFAC-Volterra
cubic model

Figure 3: Application of PARAFAC-Volterra cubic model to iden-
tify a nonlinear satellite channel
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The simulated system is a simplified model of a nonlin-
ear satellite channel [10] represented in figure 3. The channel
filters the input signal u(k) by a low-pass linear filter denoted
by Hp(z), then the signal passes through a memoryless non-
linear device defined by its input-output characteristic A(r)
represented in figure 3 and defined as a third order polyno-
mial. In the last stage the signal passes through another low-
pass filter Ho(z). In this example, Hp(z) is a Butterworth
filter and Hc(z) a Chebychev filter. Both are fourth order and
respectively defined in equations (32) and (33).

Hy(e) = (0.078 4+-0.1559z~" +0.078272)(0.0619 4-0.1238z~" 4-0.0619z72) 32)
B T 21320921+ 0.632722) (1 — 1.0486z 1 +0.29612-2) -

(0.4638 —0.4942z! +0.463822)(0.18340.1024z ' 4 0.18372)

33
(1—1.2556z"" 40.6891z72)(1 —0.7204z~" +0.1888z2) ©3)

Hc(z) =

The input signal is a gaussian white noise sequence of
length N = 20000 with zero mean and unit variance. The
simulation results were obtained using the Monte Carlo
method with 50 different additive noise sequences.

The Normalized Mean Square Error (NMSE,;;pu) be-
tween the system output y(n) and the output of the
PARAFAC-Volterra model y(n) is calculated as follows :

L 0() —30))°

NMSE s pus (n) = -
upt Z?:Q’Z(l)

(34)

Table 2 contains the NMSE,,;,, values between the
system output y(r) and the output y(n) of the PARAFAC-
Volterra model as a function of the Signal to Noise Ratio
(SNR) and the PARAFAC factors number P. The evolution
of the NMSE,;; . for different P values is plotted in figure
4. The PARAFAC-Volterra method allows to modelize the
nonlinear satellite channel with relatively small modeling er-
rofr.

NMSE between the channel output and the PARAFAC-Volterra model output
10 T T T T T T T T T

NMSEoutput

-3 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
number of iterations

Figure 4: NMSE,, s obtained with the PARAFAC-Volterra
model for three different factors numbers P (SNR=30dB)

SNR=60 SNR=30 SNR=5
P=1 | 58951072 | 7.191 1072 | 2.812 107!
P=5 [ 2329102 | 3.060 102 | 6.974 102
P=10 | 8283107 | 9.641 1073 | 2.856 102

Table 2: NMSE,,;pu: obtained with the PARAFAC-Volterra model

5. CONCLUSION

In this paper, we have presented a new approach to represent
and identify third-order Volterra kernels using the PARAFAC
decomposition, which significantly reduces the parametric
complexity of such kernels, especially when they are sepa-
rable. The ARLS algorithm is used to identify such a de-
composition.

Extension of this work to Volterra kernels of order higher
than three is under study.
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