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ABSTRACT 
In ultrasound scanners, a two-way radiation pattern is 

generated by a transmit array and a receive array. The design 
of such arrays is simplified by treating the problem as the 
design of an "effective aperture function"

 
which is 

given by the convolution of the transmit aperture function 
 and the receive aperture function . In this 

paper we consider the design of one-dimensional sparse 
transmit and receive arrays with an apodized effective aper-
ture function. The design approach is based on the factoriza-
tion of a polynomial representation of the effective aperture 
function. 
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1. INTRODUCTION 

The far-field radiation pattern P(u) at an angle θ away 
from the broadside of a linear array of N isotropic, equis-
paced elements is given by 

,)()(
0

])/(2[∑
∞

=

λπ=
n

ndujenwuP    (1)       

where d is the inter-element spacing, w(n) is the complex 
excitation or weight of the n-th element, λ is the wavelength 
and u = sinθ.  The sequence {w(n)} is the array element 
weighting as a function of the element position n and is 
known as the aperture function.  A more convenient represen-
tation of the aperture function is obtained from Eq. (1) by 
substituting  resulting in the function  ndujex ])/(2[ λπ=
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nxnwxP     (2)                                             2.  ARRAYS WITH A LINEARLY TAPERED 
EFFECTIVE APERTURE FUNCTION 

which is a polynomial in x. 
Sparse arrays with fewer elements are obtained by re-

moving some of the antenna elements which increases the 
inter-element spacing between some consecutive pairs of 
elements to more than λ/2.  The removal of elements usually 
results in an increase of the side lobe levels and may result in 
the appearance of grating lobes in the radiation pattern [1].  
In some applications, a two-way radiation pattern is gener-
ated by a transmit array and a receive array [2].  In such 
cases, it is possible to use sparse transmit and receive arrays 

whose effective aperture function is equivalent to that of a 
single array with no missing elements and hence, is not asso-
ciated with the above problems. 

If  and  denote, respectively, the transmit 
and receive aperture functions, the effective aperture function 

 is then given by the convolution sum: 
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If the number of elements (including missing elements) in the 
transmit and receive arrays are, respectively, L and M, then 
the number of elements N in a single array with an aperture 
function  is L+M–1.  The design problem thus re-

duces to the problem of determining  and  for 
a desired .   
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In an earlier paper, we outlined a method of designing 
sparse transmit and receive arrays with a uniform effective 
aperture function [3].  The uniform aperture function has a 
radiation pattern with the narrowest main lobe width, but the 
peak of its first side lobe is about 13 dB below the peak of 
the main lobe.   An increase in the side lobe rejection can be 
obtained with an array pair having a tapered effective aper-
ture function.  In this paper we outline two different ap-
proaches to the design of an array with a tapered effective 
aperture function.   

The paper is organized as follows.  Section 2 considers 
the design of arrays with linearly tapered effective aperture 
functions and Section 3 treats the design of arrays with stair-
case effective aperture functions.  Two specific design issues 
concerning sparse arrays are discussed in Section 4. 

 

We first consider the design of a sparse array pair with a 
linearly tapered effective aperture function .  To this 
end we choose  
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The number of elements in the effective aperture function is 
then N = R + S –1.  The number of apodized elements is 
equal to 2(R–1), with (R–1) apodized elements at the begin-
ning of   and (R–1) apodized elements at the end.  

The values of the apodized elements are 
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The parameter S must satisfy the condition 

1
R

R−

1−>S R . Fur-
thermore, if R and S are positive integers that are power-of-2, 
we can design sparse transmit and receive antenna arrays 
using the polynomial factorization approach proposed else-
where [3]. We illustrate the design of sparse arrays with apo-
dized end elements in the following two examples. 
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Figure 2:  Effective aperture function of Example 2. 
Example 1:  R = 2 and S = 16.  Here )1()(
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  Using the polynomial factorization ap-

proach [3]  can be expressed  as  
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3.   ARRAYS WITH STAIRCASE APERTURE  
FUNCTION 

 )(2 xP  = (  ),1)(1)(1)(1 842 xxxx ++++ For the design of array pair with a staircase effective ap-
erture function, there are two possible forms of the factor of 
Eq. (1) as described next. 

and hence, 
 
is of the form )(xPeff
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A plot of the effective aperture function is shown in Figure 1.   
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The number R of elements (including zero-valued ones) in 
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For a staircase effective aperture function , the 

number S of elements in  of Eq. (2) must satisfy the 

condition   The number of elements in the ef-

fective aperture function in this case is then N = + 

S. The number of apodized elements is equal to . 

The values of the apodized elements are 
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   For a given set of {  i   and 

S,  is of staircase form. If in addition, S is a power-
of-2 positive integer, we can design sparse transmit and re-
ceive antenna arrays using the polynomial factorization ap-
proach [3]. We illustrate the design of sparse arrays with a 
staircase effective aperture function in the following exam-
ple. 
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Figure 1:  Effective aperture function of Example 1. 

 
One possible design for the transmit and receive arrays ob-
tained using appropriate factors of  is given by: )(xPeff
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Example 2: R = 3, S = 16. Here  is given by )(xPeff
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A plot of the effective aperture function is shown in Figure 2.  
A possible design for the transmit and receive arrays is  
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A plot of the above effective aperture function is shown in 
Figure 4.  One possible efficient factorization of is )(xPeff
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Figure 3:  Effective aperture function of Example 3. 

 

 
A plot of the above effective aperture function is shown in 
Figure 3.  One possible efficient factorization of  is )(xPeff
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3.2. Case B – odd number of factors: In this case, the factor 

 is of the form  )(1 xP
Figure 4:  Effective aperture function of Example 4. 

 
Example 5:  Consider first k   Here =  .5,,1,6 K== rr )(1 xP
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The number R of elements (including zero-valued ones) in 

 is given by   For a staircase ef- 

fective aperture function , the number S of elements 

in  of Eq. (2) must satisfy the condition  S >   

 The number of elements in the effective aper-

ture function in this case is then N =  + S. The 

number of apodized elements is equal to 2   

The values of the apodized elements are 
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For a given set of {   and S,  is of 
the staircase form. If in addition, S is a power-of-2 positive 
integer, we can design sparse transmit and receive antenna 
arrays using the polynomial factorization approach proposed 
[3]. We illustrate the design of sparse arrays with staircase 
effective aperture function in the following example. 
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4.  DESIGN ISSUES 
 

There are two issues that need to be considered in the 
design of sparse arrays with a linearly tapered and staircase 
effective aperture function:  Element reduction factor and the 
side lobe rejection.  The element reduction factor provides a 
measure of the efficiency of the factorization of the effective 
aperture function and is given by ),/()( 21 RT NNNN ++
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sidelobe rejection is the difference in the gain level in dB 
between the height of the mainlobe and that of the sidelobe 
with the largest height.  In this section we examine these two 
issues with respect to the design examples given in the previ-
ous section. 

5. CONCLUDING REMARKS 
 

As the examples show the best compromise with respect 
to getting higher sidelobe rejection of more than 13−  dB and 
also an element reduction factor of greater than 1 is obtained 
only with an array having a staircase effective aperture func-
tion.  However, with any type of tapered effective aperture 
function, the price to pay is an increase in the width of the 
main lobe.  Work is continuing to develop explicit design 
guidelines. 

 
4.1.  Arrays with a Linearly Tapered Effective Aperture   
        Function  
 

The design example 1 with R = 2 and S = 16 has a 
sidelobe rejection of dB and an element reduction 
factor of (   Likewise, the design exam-
ple 2 with R = 3 and S = 16 has a sidelobe rejection of 

dB and an element reduction factor of 
  In general, in the case of a linearly 

tapered effective aperture function, it is not possible get more 
than about dB of sidelobe rejection if a more efficient 
factorization of the effective aperture function is also desired. 
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4.2.  Arrays with Staircase Aperture Function 
 

In this case there exists two different possible shapes of 
the effective aperture function and it is possible to get a 
higher sidelobe rejection along with a larger element reduc-
tion factor. 
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Figure 6:  Radiation pattern of the array of Example 4. 
 
 In the case of Example 3, the sidelobe rejection is 

dB. The element reduction factor achieved here is 
only (5+16)/(10+8) = 1.167. A plot of its radiation pattern 
is shown in Figure 5.  
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Figure 5: Radiation pattern of the array of Example 3. 

 
In Example 4, the sidelobe rejection is dB and 

the largest element reduction factor possible is only 
(6+16)/(12+8) = 1.1. A plot of the corresponding radiation 
pattern is shown in Figure 6.  

93.20−

In Example 5, the sidelobe rejection is  dB and 
the largest element reduction factor that can be achieved is 
(6+51)/(17+18) = 1.629. 
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In Example 6, the sidelobe rejection is  dB and the 
largest element reduction factor possible is (5 + 85)/(17 + 25) 
= 2.143. 
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