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ABSTRACT

In this paper we have studied maximum covariance initiali-
zation scheme and cascade-correlation learning to improve
the performance of a multilayer perceptron network equal-
izer in nonlinear channel environment. The initialization
scheme enables faster convergence and the cascade-
correlation learning provides adaptive network size. These
methods are compared to a traditional MLP network equal-
izer and to a simple linear equalizer.

1. INTRODUCTION

In digital wireless communications the transmitted signal is
subject to various distortions during its propagation through
the communication channel. Multipath propagation causes
several delayed and differently attenuated copies of the
transmitted signal to arrive to the receiver, hence causing
intersymbol interference (ISI). Noise is also always present
to some extent in real applications. Furthermore, some
nonlinear distortions can occur, e.g., in the amplifiers of the
transmitter and the receiver. These disturbances often cor-
rupt the transmitted signal to an extent, that without any
compensation, the original information cannot be found
from the received signal. The compensation for these distur-
bancies is called equalization. The simplest technique for
equalization is a linear equalizer (LE), i.e., a linear filter [1].
However, sometimes nonlinear equalization methods are
needed in order to compensate for the channel distortions.
Here we have studied multilayer perceptron (MLP) neural
networks for nonlinear channel equalization. MLP networks
have been studied for equalization purposes for some time
and they have been found to perform very well, e.g., [2, 3].
They do have a drawback in the form of high computational
complexity, mainly due to extensive training phase, which
can restrict their use in practical applications. However,
there exists ways to decrease their complexity. In this paper
we have applied two techniques that decrease the required
amount of computation. These are the maximum covariance
(MC) initialization and cascade-correlation (CC) learning.

Conventional MLP networks use a fixed size, and then train
the network to solve the problem. This approach can cause
unnecessary computation, if the network size is determined
to be too large. Furthermore, it may also lead to overfitting
[4]. On the other hand, if the network size is set too small,

the network may never learn the problem properly. Since
the channel response can also be time-varying, it is often
very difficult to determine the optimal fixed size for the
MLP network equalizer in advance. In cascade-correlation
learning method [5] we start with a network with no hidden
units, which corresponds to a linear equalizer, and add hid-
den units one by one to the network if needed. The CC
learning method finds a suitable sized network for each
channel response. This can decrease the computational load
of the system compared to a fixed size network.

The learning can be also improved by using some computa-
tionally efficient weight initialization method instead of ran-
dom weight initialization. Here, we have applied maximum
covariance weight initialization scheme [6] to the network. In
the MC initialization method, first a large number of candi-
date hidden units is created by initializing their weights with
random values. Then the desired number of hidden units is
selected among the candidates applying MC criterion [6].
MC initialization scheme speeds up the convergence of the
network and thus less training is needed. Since MC initializa-
tion is itself computationally light, it makes possible to fur-
ther decrease the computational load of an MLP network as
we will show.

2. NONLINEAR CHANNEL MODEL

A widely used model for a linear dispersive channel is given
by the finite impulse response (FIR) model as follows

L
s(t) =Y h()a(t—i)

i=0

where A(i) is the impulse response of the channel and a(f)
denotes the true transmitted symbol at time 7. The nonlineari-
ties in the channel can be expressed as a polynomial function
of the transmitted signal in the following manner

() =)+ Y A (s k=23,...

where A; are appropriate parameters. The received signal at
the equalizer can be then written as
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Figure 1. Two-dimensional scatter plot of a channel output with SNR = 20 dB, where ‘x’ denotes transmitted +1
and ‘o’ denotes transmitted -1. In plot a) the delay is 0 and in plot b) the delay is 1.

y(t) = r(t) +n(1)
where 1(t) denotes additive noise.

In our simulations, we have studied a channel impulse re-
sponse H = [0.3482 0.8704 0.3482], which has been widely
used in the literature, e.g., [3]. The channel nonlinearities are
given by the following equation [7]

(1) = s(£)+0.15(s(1))* +0.01(s(2))* .

Equalization can also be seen as a classification problem,
which gives the advantage, that we do not need a model for
the channel or the interferences. This approach is depicted in
Fig. 1. There we have considered a case, where the equalizer
has two inputs, the channel output at time ¢ and time #-1 [y(¢)
Wt-1)]" and the received sample is marked with ‘x’, if the
transmitted bit at time ¢ was +1, and with ‘o’, if the transmit-
ted bit was -1. Equalization can now be seen as a task, where
we need to separate the clusters representing transmitted +1
from clusters representing transmitted -1. One can see, that in
the first case (Fig. 1a.) the formed clusters are not linearly
separable. Therefore, nonlinear equalization methods are
needed. By inserting a delay of one symbol period (Fig. 1b.),
the formed clusters are closer to being linearly separable.
However, nonlinear methods can provide better bit error rates
(BER) in this case too, as will be shown.

3. MAXIMUM COVARIANCE INITIALIZED
CASCADE-CORRELATION LEARNING

The studied MLP network equalizer had one hidden layer
and one output unit. The activation function in the hidden
layer was chosen to be hyperbolic tangent (tanh) function,

whereas the output unit was set to be linear. The output of
the network can now be written as follows

4 )4
2(t)=vo+ ) v; tanh(wg; + D wyy(t—i+1)
J=1 i=1

where wy; is the weight between ith input and jth hidden unit
and v; is the weight between jth hidden unit and the output
unit.

We have studied three MLP networks. First, a conventional
network, with fixed size and random weight initialization.
Secondly, an MLP network with fixed size, which uses MC
initialization scheme. Finally, the third MLP network ap-
plies MC initialization and CC learning combined. All the
networks apply RPROP-algorithm for training [8]. The MC
initialization scheme can be found in [6]. Here we shall
give details of the combined MC-CC learning algorithm,
which goes as follows:

1. First there are no hidden units in the network. At this
point the only weights that feed the output unit are the bias
weight and the network inputs. This corresponds to linear
equalization.

2. Optimize the weights feeding the output unit by minimiz-
ing the cost function E (sum of squared output error) using
pseudo-inverse method of linear regression.

3. If the desired learning performance was reached, quit the
cascade-correlation training. Otherwise, proceed to step 4.
4. Create Q candidate hidden units (Q >> ¢,, where ¢y, is
the maximum number of hidden units) by initializing the
weights with random values. Here we have used Q = 10g,,
and the uniformly distributed random values of the candi-
date hidden units were chosen from the interval [-4,...,.4].
Do not connect the candidate units to the output unit yet.
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5. Compute the covariance for each of the candidate unit
from the equation

1 & - _
Cuc.j :ﬁZ(O‘;(I)—Oj)(S(I)—E) Jj=1,...,0
t=1

where N is the number of training examples, o,(¢) is the out-
put of the jth hidden unit for the #th example, o ; is the mean
of the jth hidden unit outputs, €(¢) is the output error at the

network output and € is the mean of the output errors.
6. Find the maximum absolute covariance |CMC, j| and add

the corresponding hidden unit to the network. Do not yet
connect it to the output unit. Remove the corresponding
hidden unit from the candidate units and set Q = O-1.

7. Maximize the absolute correlation between the output of
the new unit and the errors of the network output by maxi-
mizing the cost function Ccc,

N p— p—
D" (o() - o)(e(t) - €)

t=1

Cec =

where o(f) is the output of the new unit at time ¢ and o is
the average of the outputs. The maximization is done by
adjusting only the weights feeding the new hidden unit. As
the hidden units have nonlinear activation function, gradi-
ent methods must be used. Only after the new hidden unit
has been trained, its output is connected to the output unit.
8. Optimize the currently existing weights that feed the out-
put unit with linear regression. Note that the number of
these weights is increased by one every time a new candi-
date unit is connected to the output unit and due to the op-
timization the output error changes each time.

9. If the desired learning performance has been reached or
¢m candidate units have been connected to the output unit,
quit. Otherwise, go back to step 5 for the remaining candi-
date units.

To determine the desired learning performance in step 9, we
observe the training mean square error (MSE). After we have
added and trained the nth hidden unit, its training MSE is
computed. This value is then subtracted from the training
MSE value of the (r-1)th hidden unit. If this value is smaller
than a given threshold, which was set to 0.01 in our simula-
tions, no more hidden units are added. Otherwise (n+1)th
hidden unit is added and trained, unless the maximum net-
work size has been reached, and the same steps are taken as
with the nth hidden unit.

4. SIMULATION RESULTS

The transmitted signal considered here is a binary data burst,
which consists of 500 bits. The first 100 bits are used for
training the equalizers, thus they are known at the receiver.
The final 400 bits carry the information, which is not known
beforechand. We have transmitted 100 consecutive bursts

through the described nonlinear channel with varying SNR.
For each received burst, the equalizer is trained with the
known training sequence of the burst and the information
sequence is then equalized without further adaptation. The
average bit error rate (BER) is then computed over the 100
transmitted bursts.

The MLP network equalizers with fixed size were given
eight hidden units and two inputs. The MC initialized MLP
network required approximately 80 training epochs for each
burst, whereas the randomly initialized MLP network needed
at least 500 training epochs. Each added hidden unit of the
MC-CC MLP network was trained for 40 epochs, which
seemed to be enough for convergence. In addition, we have
also given results for a linear equalizer, which uses pseudo-
inverse method of linear regression to determine its weights
by the following equation

vl =(RR")"Ra™

where R is a (p+1)*N-dimensional input matrix and a is an
1*N target output vector [4]. This matrix computation pro-
vides fast and efficient way to determine the weights for the
linear equalizer. Furthermore, there is no need for iterations
nor any stopping criteria and since there are no need for user-
defined parameters, the final solution cannot be deteriorated
because of poor parameter selection.

Fig. 2 shows the results achieved. In plot 2a. the delay is 0,
thus the equalization problem is similar to the one depicted in
Fig. 1a., except that the clusters appearing on the scatter plot
may overlap differently, depending on the SNR. However, it
is clear that the LE is not able to provide satisfactory bit error
rates, whereas all the MLP network equalizers can. The MC-
CC MLP network seems to provide the best BERs, even
though its average size is smaller than the size of the MLP
networks with fixed size, as can be seen in Fig. 2b. Also, the
MC initialized MLP network provides slightly better BERs
than the randomly initialized network. It also needs clearly
less computation, since it requires only 80 training epochs,
whereas the randomly initialized network needs 500 training
epochs. When comparing the time spent for computation, we
observed the used CPU-time to run the equalization opera-
tion using Matlab 6.5. with Pentium III 600 MHz processor.
The LE spends approximately 0.3 seconds in each case for
equalizing 100 bursts, whereas the randomly initialized MLP
network and MC initialized network spend 82.1 and 15.8
seconds, respectively. The time spent with MC-CC network
varies, depending on the incoming signal and hence, the size
of the network to be grown. Given the delay is 0, MC-CC
MLP network spends 26.3 seconds, if the SNR = 10 dB, and
23.1 seconds, if the SNR = 20 dB. When the delay is 1, it
spends 12.6 seconds, if the SNR = 10 dB, and 7.0 seconds, if
the SNR =20 dB.

In Fig. 2¢. we can see that, since the equalization problem is
close to being linearly separable (similar to Fig. 1b.), even
the LE provides better results. However, the MLP networks
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Figure 2. Plots a) and c) show the BERs for the LE (dash-dotted), randomly initialized MLP network (dotted), MC
initialized MLP network (dashed) and MC-CC MLP network (solid line) when delay is 0 and 1, respectively. Plots b)
and d) show the average number of hidden units in the MC-CC MLP network when delay is 0 and 1, respectively.

still achieve even better BERs. Now, the MC initialized MLP
network provides the smallest BERs, wheras the MC-CC
trained network seems to grow a bit too small networks as
can be seen in Fig. 2d. It saves computation by equalizing
several bursts without any hidden units, whereas it should
grow a bit larger network in some cases to achieve compara-
ble results with the fixed-size networks. This could be
achieved by more careful selection of the desired learning
performance in the algorithm.

5. CONCLUSIONS

The studied initialization and learning methods have pro-
vided significant improvements on the performance of an
MLP network equalizer over nonlinear channels. The studied
MC initialization provides much faster convergence than
random weight initialization enabling to use less training
iterations and hence, less computation. The cascade-
correlation learning method can further decrease the need for
computation, especially in channels, that have varying condi-
tions. In these cases, there is no need to set some fixed size to
the network, but the CC learning can grow the network from
scratch, thus providing suitable sized network for each chan-
nel case.
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