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ABSTRACT
In this paper, we analyze the quantization error effects of the
radix-22 FFT algorithm. We propose per tone models for
the error power. This is a different approach from the com-
mon choice of a maximum or mean value over the spectrum.
In particular, we treat three different errors: 1) due to input
quantization, 2) due to coefficient quantization and 3) due to
quantization after a multiplication. This analysis is applied to
a DMT scheme. Simulation results agree with the theoretical
predictions.

1. INTRODUCTION

The Discrete Fourier Transform (DFT) is probably the most
important tool in discrete time signal processing. Since the
appearance of Cooley-Tuckey algorithm, the search of effi-
cient algorithms for computing the DFT has been covered
extensively in the literature [3].

When these algorithms, usually grouped into the Fast
Fourier Transform (FFT) family, are implemented with fi-
nite precision arithmetics, several error sources appear. This
subject has been thoroughly studied since the middle of the
sixties [4]. In this work, we focus on three particular errors:
1. due to input quantization.
2. due to coefficient quantization.
3. due to quantization after a multiplication.

Per tone error models are provided for the radix-22 FFT
algorithm, a novel fast computation scheme introduced by He
and Torkelson [2]. It has the benefits of having the computa-
tional performance of the radix-4 FFT, but with the hardware
requirements and ease of implementation of the radix-2 FFT.

The idea is to provide a model that predicts the noise
power due to quantization errors at each output tone. Usu-
ally, the maximum or mean value over all the spectrum is
used to represent the error power. But we could be particu-
larly interested in a per tone error power. This would be the
case when each tone represents an independent channel, and
th FFT is considered as a mapping (modulation) tool. An
example of this situation appears in the Discrete MultiTone
(DMT) modulation technique [5]. The consequence of the
FFT quantization errors is the degradation of the Signal to
Noise Ratio (SNR).

We show that the radix-22 FFT is a suitable algorithm
for DMT schemes, and in particular to an Asymmetric Dig-
ital Subscriber Line (ADSL) modem. Trough a comparison
with the widely used radix-2 FFT algorithm, we found that
the improvement is not only referred to its computational ef-
ficiency and low hardware requirements, but also to its better
performance to finite word length effects.

This work has been supported in part by the Universidad de Buenos
Aires, in the context of the project UBASoft.

2. THE RADIX-22 FFT

The FFT is a family of efficient algorithms for computing the
DFT of a discrete time signal. This transform is defined as:

X(k) =
N−1

∑
n=0

x(n)W nk
N k = 0,1, . . . ,N −1,

where the DFT coefficients are powers of WN = e− j2π/N , also
known as twiddle factors, and represent the N-th roots of
unity. The basic tool of FFT algorithms is divide and con-
quer: an N-point FFT is divided in a set of smaller ones.

If N = 2ν2 , with ν2 ∈ Z, the radix-2 decimation in fre-
quency FFT could be used. This approach divides by half
the FFT lengths at each stage. By performing two consecu-
tive decompositions, it results:

X(4k3 + 2k2 + k1) =
N/4−1

∑
n3=0

1

∑
n2=0

1

∑
n1=0

x(n1N/2+

+ n2N/4 + n3)W
(n1N/2+n2N/4+n3)(4k3+2k2+k1)
N , (1)

where n = n1N/2 + n2N/4 + n3. The procedure is followed
until the ν2 stages are completed. The total number of multi-
plications is O(N log2 N), i.e., proportional to N log2 N. The
savings in the number of computations come from applying
the complex conjugate symmetry and the periodicity proper-
ties satisfied by the FFT coefficients [3].

If N = 4ν4 , with ν4 ∈ Z, the sequence could be divided
in four at each stage. This procedure is performed by the
radix-4 decimation in frequency FFT, which has a complex-
ity of O(N log4 N). However, the basic structures used in the
computation, also known as butterflies, are more complicated
than the butterflies used in the radix-2 FFT.

He and Torkelson [2] proposed the radix-22 FFT, an al-
gorithm with the computational performance of the radix-4,
but with the hardware requirements and ease of implementa-
tion provided by the radix-2. If we sum over n1 in Eq. (1),
we find:

X(4k3 + 2k2 + k1) =
N/4−1

∑
n3=0

1

∑
n2=0

[

Bk1
N/2(n2N/4 + n3) ·

· W (n2N/4+n3)k1
N

]

W (n2N/4+n3)(4k3+2k2)
N , (2)

where Bk1
N/2(u) = x(u)+ (−1)k1x(u + N/2).

The main idea of the new algorithm is to join the twid-
dle factor W (n2N/4+n3)k1

N with the other exponentials before
forming the next butterfly. This combination improves the
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Figure 1: Radix-22 FFT scheme with N = 16 [2].

number of multiplications as:

W (n2N/4+n3)(4k3+2k2+k1)
N =W Nn2k3

N W n2N/4(2k2+k1)
N W 4n3k3

N ·

·W n3(2k2+k1)
N =(− j)n2(2k2+k1)W n3(2k2+k1)

N W 4n3k3
N .

Using this fact and summing over n2 in (2), i.e., doing
the second stage of the DFT decomposition, the FFT takes
the form of:

X(4k3+2k2+k1)=
N/4−1

∑
n3=0

[

H(k1,k2,n3)W
n3(2k2+k1)
N

]

W n3k3
N/4 ,

(3)
where

H(k1,k2,n3)=

BFI
︷ ︸︸ ︷

Bk1
N/2(n3)+(− j)(2k2+k1)Bk1

N/2(n3+N/4)
︸ ︷︷ ︸

BFI

(4)

The first stage DFT decomposition is carried out by BF I,
while the second one is done by BF II (see Fig. 1). The
last step of the algorithm performs the multiplications by
W n3(2k2+k1)

N . Finally, Eq. (3) shows how to regroup the re-
sults to form 4 DFTs of length N/4. The described procedure
could be applied again to these DFTs until the desired output
is obtained. The output comes in bit reversed order, as shown
in Fig. 1.

3. QUANTIZATION ERRORS ANALYSIS

From this point on, we consider that the real and imaginary
parts of the input signal are represented in fixed point two’s
complement system and have magnitude less than one.

When an FFT is computed using finite word length, three
different errors appear, which are caused by: 1) input quan-
tization. 2) coefficient quantization. 3) quantization after a
multiplication. We treat them separately, meaning that when
one of them is considered, the others are assumed to be neg-
ligible.

3.1 Input Quantization Error

An A/D (Analog to Digital) converter is usually the first stage
of a digital system. The real an imaginary parts of the input
(which are assumed to be independent) are quantized using
Bi +1 bits, introducing a complex error with variance σ2(εi).

When two points of the input are added (or subtracted),
the resulting error has twice the original power. As the roots
of unity have magnitude 1 and assuming that the errors are
decorrelated, each output tone will have an error power due
to input quantization equal to the sum of all the error powers
of the input components. Thus, at the k-th output node1, the
mean squared error is:

E[|ei(k)|2] = Nσ2(εi). (5)

This result is true for the radix-2 and radix-22 FFTs, be-
cause they only differ in the way they distribute the multipli-
cations along the signal flow.

3.2 Coefficient Quantization Error

When an FFT is computed, the roots of unity are required.
They could be previously computed and stored or computed
on-line. In both cases, an error source appears by using a
quantized coefficient W q

N (represented with Bc + 1 bits) in-
stead of the original WN .

We want to model the error due to coefficient quantiza-
tion at the k-th output node, i.e. ec(k). To this end, we start
by looking at Fig. 1. From (4), the BF II gives the result:

xBFII(k) = x(k)+ (−1)k1x(k + N/2)+ (− j)(2k2+k1) ·

·
(

x(N/4 + k)+ (−1)k1x(3N/4 + k)
)

,

where the index are computed modulus N. After that, the
first coefficient multiplication takes place. During next stage,

1The output node index k corresponds to the k-th tone after a bit reversing
operation.
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four quantities of the form xBFII(i)W
q
i (W q

i is the quantized
coefficient that is used depending on the position in the signal
flow) are summed up. Then, the result is multiplied by an-
other coefficient W q

j . Thus, the resulting error has the form
of:

ec(k) =
N/4

∑
i=1

xBFII(i)

(
ν4

∏
j=1

W q
i, j −

ν4

∏
j=1

Wi, j

)

.

If we assume that the input sequence is i.i.d. (independent
and identically distributed), the mean squared error becomes:

E[|ec(k)|
2] = 4σ2

x

N/4

∑
i=1

∣
∣
∣
∣
∣

ν4

∏
j=1

W q
i, j −

ν4

∏
j=1

Wi, j

∣
∣
∣
∣
∣

2

, (6)

where σ2
x is the input signal variance.

3.3 Quantization After a Multiplication Error

Each time we perform a nontrivial multiplication, i.e., the
ones that are not by ±1 or ± j, an error occurs due to the
quantization of the result to Br + 1 bits. We model this error
as an additive term εr at the output of the multiplier with
power σ2(εr). We make the following assumptions [3]:
1. The error takes values on the interval [−∆/2; ∆/2], where

∆ = 2−Br . The first and second order moments of the
error are the same as if it was uniformly distributed in
this interval.

2. The errors are decorrelated among them and with respect
to the input sequence.

These assumptions have been widely discussed in the bibli-
ography [1][6]. Its validity depends on certain conditions on
the characteristic function of the number to be quantized .
Although these conditions are not satisfied by many distribu-
tions, they could be approximately satisfied.

It is important to notice that each complex coefficient
has magnitude one, because we are not considering the co-
efficient quantization error. Then each error source makes
the same average power contribution to the output. There-
fore, the total average error power at one output node, e.g.
E[|er(k)|2], will be σ2(εr) multiplied by the total number of
multiplications that affect the considered node.

Due to the strategy used by the radix-22 FFT, the first
stage performs a decomposition in four blocks. The first one,
(k1 = 0 and k2 = 0) has only trivial multiplications by one.
The other blocks, has one multiplier equal to one (W 0

N) and
in particular, the block associated with k1 = 0 and k2 = 1
presents one multiplication by − j. Through this decomposi-
tion procedure, the total number of nontrivial multiplications
needed to calculate an FFT of length N > 4, has the form of:

ν4−1

∑
i=1

3
4

N −4i = N

(
3
4
(ν4 −1)−

1
3

)

+
4
3
.

On the other hand, the radix-2 FFT makes N((ν2 −
1)/2− 1) + 2 nontrivial multiplications. Given that ν4 =
ν2/2, when N is large, it could be seen that the radix-22 FFT
gives a 25% save in the total number of nontrivial multipli-
cations over the radix-2 FFT.

However, for the per tone model we are interested in the
total number of multiplications that propagate to a certain
output node. So at each stage, there is one butterfly that

Figure 2: DMT transmission block diagram. FFT blocks are
the shaded blocks.

should be considered, and only if it has a nontrivial multipli-
cation associated. As a consequence of the exposed analysis,
we formulate the following theorem:

Theorem 1 Let 0 ≤ k ≤ N −1 be the index of a node in the
output array. This value could be represented in a quater-
nary system using ν4 bits. If the least significant bit (b0) is
dropped and bν4−1 is considered as the most significant bit,
the total number of nontrivial multiplications associated with
the tone at position k is:

ν4−1

∑
i=1

mi,

where

mi =







0 ifbi = 0,

4i −2 ifbi = 1,

4i −1 ifbi = 2 or3,

�

This result is obtained by careful analysis of the signal
flow (see Fig. 1).

In this case, the maximum number of nontrivial multi-
plications for a single tone takes place on each output node
where its quaternary index is represented using only the dig-
its 2 or 3. Then,

ν4−1

∑
i=1

4i −1 =
4ν4

3
(1−4−ν4)−ν4 =

N −3ν4 −1
3

. (7)

In the radix-2 FFT, the maximum number of multiplica-
tions for a single tone is N − 2ν2. So, when N = 256 this is
equal to 240. If we do the same computation for a radix-22

FFT using (7), the maximum number of nontrivial multipli-
cations is 81. Thus, there is a saving of three times in the
maximum error variance per tone by using the radix-22 FFT
instead of the radix-2 FFT.

4. AN APPLICATION: THE ADSL TRANSMISSION

4.1 The ADSL modem

A brief scheme of a DMT transmission system could be seen
in Fig. 2. The data sent by the modem at the central office
is modulated as a DMT symbol. This symbol is formed by
256 complex values for the particular case of an ADSL trans-
mission. Each complex number belongs to a QAM constel-
lation, whose size was previously determined by a loading
algorithm. After that, the set of 256 numbers is complex con-
jugate duplicated, resulting in a 512-point sequence which is
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viewed as the frequency characteristic of the symbol. Now,
an IFFT (Inverse Fast Fourier Transform) takes place, in or-
der to obtain the 512-point real valued sequence that is trans-
mitted. When this data is received at the final user’s modem,
a 512 real FFT is computed, in order to recover the original
data.

4.2 Experimental setup

Now, we focus on how the results of the previous section
could be applied to a DMT communication system, and par-
ticularly, to an ADSL receiver.

By exploiting the fact that the input sequence is real, we
use a 256-point complex radix-22 FFT. The error is gener-
ated by subtracting a double precision FFT to the quantized
FFT. The sequence length was set to N = 256 points and real
arithmetic was used. The real and imaginary parts of the
input sequence were independent and uniformly distributed.
The simulation results shown are obtained by ensemble av-
eraging over 2000 independent trials of the experiment.

4.3 Analysis of results

We corroborate the results predicted by (5), (6) and Theorem
1 for the different error sources. Due to space limitations,
we don’t show all the simulation results; although there is a
good match with the theoretical ones.

In the coefficient quantization case, the variance of the
error is not constant for all tones and the shape of the picture
depends on the choice of Bc, as predicted by (6). Although
the input variance does not change, the deterministic part as-
sociated with the values of W q causes the mismatch between
plots with different Bc.

An important aspect to notice is based on how the error
power is distributed along the output array (and as a conse-
quence, along the whole bandwidth) in the per tone model
due to quantization after a multiplication. As we said before,
at each stage of the radix-22 FFT there is a division in four
blocks. The first quarter of the output array has less noise
power than the other quarters. This pattern is repeated inside
each block. This is in contrast with the radix-2 FFT, where a
monotonically increasing (in groups of 4 consecutive points)
behavior is presented.

Finally, the combination of the three errors was simulated
for a 64-QAM, and the results are shown in Fig. 3. For the
theoretical prediction, we assume that the three error sources
are independent. Thus the total error variance would be:

E[|etot(k)|
2] = E[|ei(k)|

2]+ E[|ec(k)|
2]+ E[|er(k)|

2]. (8)

With the simulated parameters Bi = 7, Bc = 15 and Br =
7, the hypothesis made in the formulation of our models are
not far from being satisfied. This allows a good agreement
between theoretical and simulated values. In particular, it can
be seen from (8) that the error due to input quantization is the
dominant one. This fact is usually encountered in practice
because the use of more accurate A/D converters increases
the cost of the modem.

5. CONCLUSIONS

In this work we proposed per tone quantization error models
for the radix-22 FFT. This is important when each tone rep-
resents an independent channel and the FFT is considered as
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Figure 3: Error variance considering the three errors. Input:
64-QAM. Bi = 7, Bc = 15, Br = 7.

a mapping tool. An example of this situation is DMT mod-
ulation. Simulation results are in agree with the theoretical
ones.

Particularly, the radix-22 FFT appears as a suitable choice
for an ADSL receiver. The first reason for this is that it gives
an easy implementation with few hardware requirements and
better computational performance than the radix-2. Second,
it has an error power reduction with respect to the radix-2
FFT. It has not only a lower maximum error power value, but
also a different shape of the noise power characteristic.
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