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ABSTRACT

The affine projection algorithms (APA) are a family of adap-
tive filters with decorrelating properties. In this paper we pro-
pose the use of a time-varying explicit regularization factor
instead of the classic step size control. We show that APA re-
sults stable and has robust performance against disturbances
and model uncertainties. This fact is shown by the H* op-
timality and error energy bounds we provide. Finally, we
find the optimal regularization choice for maximum speed of
convergence. We consider first the case under independence
assumptions and then with gaussian hypothesis.

1. INTRODUCTION

An adaptive filtering problem could be understood as one of
identifying an unknown system using input-output data pairs.
These situations appears very frequently in engineering ap-
plications. Adaptive filtering schemes have not only the abil-
ity of solving problems with less computational cost but can
also deal with time variations of the system (nonstationary
environments).

In this work, we focus on the Affine Projection Algorithm
(APA) [5]. It performs the actualization of the system estima-
tion based on multiple input vectors. Although it has more
computational cost than the widely used Normalized Least
Mean Squares (NLMS) algorithm [2], it also presents better
decorrelation properties. This allows us to improve the speed
of convergence of the NLMS algorithm as the correlation of
the input data increases [8].

Particularly, we study the role of the regularization factor
in this algorithm. Its use has been justified in the bibliog-
raphy — specially if the input data is highly correlated — by
invoking noise power reduction and numerical stability argu-
ments [6].

We propose a modified step size with a time varying reg-
ularization, (3;, which is sustained from new different points
of view. First, the regularization parameter can control the
changes along the direction of update without an upper sta-
bility bound (for any positive value), so the classic step size
U is no longer needed. Second, f3; is related with robustness
issues. By invoking the theory of H” estimation in Krein
spaces [3], we can prove that the APA with this modified
update is H* optimal. As a consequence, it presents a ro-
bust behavior against perturbations and model uncertainties,
in the sense that small perturbations lead to small estimation
errors. This is an important characteristic in real implemen-
tations.

This work has been supported in part by Universidad de Buenos
Aires (T1-09, TI-39 and 1-025), and Consejo Nacional de Investigaciones
Cientificas y Técnicas, CONICET (PIP-4030).

Xi W

Figure 1: An adaptive filtering problem.

However, the robustness guaranteed by the H* approach
is only true along a time interval, with possibly infinite
length. That is why we look for energy relations that allow
a local robust behavior (robust at each time instant). Follow-
ing the ideas introduced by Rupp and Sayed [7], we find local
and global error energy bounds for the APA family using our
modified update.

After analyzing the use of the explicit regularization, we
propose to optimize its choice for maximum speed of con-
vergence. We work first using independence assumptions
and second with gaussian hypothesis with unspecified col-
oring. Due to the difficulty of finding closed expressions,
we assume certain conditions on the correlation matrix of
the weight error vector. In this case, an intuitive result is
found: the regularization parameter should be proportional
to the noise power and inversely proportional to the weight
error power at the previous time instant. A similar result was
reported in [4], but using white input and large filter order hy-
pothesis. Although the expressions could be complex, they
give information about the relationship between the value of
the regularization parameter and the convergence behavior of
the algorithm.

The remainder of this work is organized as follows. In
section 2 we introduced the APA family and the first ap-
proach that supports our modified update. Section 3 states
the main results about the H* optimality of the APA family
and the local and global error energy bounds. We leave to
section 4 the optimization of the regularization factor.

2. THE APA FAMILY

Let w; = (w?,w},...,w?”fl)r € CM*1 be an unknown lin-
ear FIR system. The associated adaptive filtering prob-
lem is represented in Fl% The input signal at time i,

= (L XM T e CMXD pass through the system
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giving an output w/’x; € C. This output is observed, but in
this process it usually appears a measurement noise, v; € C,
which will be considered as additive. Thus, each input x;
gives an output d; = wilx; +v;.

The idea is to find W; to estimate w;. This filter receives
the same input, leading to an output estimation error e; =
d; — vAle x;. The way in which w; is computed depends on
the cost function to be optimized. In the sequel, we assume
that the system is LTI (Linear Time Invariant).

When data blocks are used, we can define the data matrix
X; = [xix;_ -~ x;_ 1] € CM*UHD) " the desired vector d; =
[didi—y - di,L]T € CLADx1 and the error vector el =df —
X5, e CE+DxL
The APA was first introduced in [5], as the recursion:

. -1, .
Wi =Wt + X (XIX,) " e, W1, (D

where L; is a scalar known as step size, included to control
the changes along the selected direction. Moreover, setting
L =01n (1), leads to the popular NLMS algorithm.

An interesting interpretation of the APA comes from
looking for the least squares solution that minimizes the
square norm of OW; = W; — W;_1, subject to the constrain
e, ;= d; —X/"W; = 0. This shows that the APA sets to zero
the last L + 1 a posteriori errors.

The first motivation for using APA is to make an im-
provement on the convergence speed with an acceptable in-
crease in the computational cost. Sankaran and Beex have
shown in [8] that 0 < 4 < 1 and 1 < U < 2 are both stable,
but the first choice has less steady state error with the same
convergence speed.

On the other hand, when highly colored input data are
presented, the matrix inversion in (1) becomes very difficult
as its condition number grows critically. Using this argu-
ment, a positive regularization term is usually added.

These are some of the reasons why we propose to set
M =1 and use a time-varying regularization parameter to
control the changes along the selected direction, so that the
APA update becomes:

oW, =X; (B1, +XIX;)lef i=0,1,....N (2

This rule gives an “effective step size” in the interval
(0,1) for any positive 3;. So there is no superior bound that
could make the algorithm unstable.

3. ROBUST BEHAVIOR OF THE APA FAMILY

There are other very important reasons for preferring the
modified update, and they will be stated in this section. The
main consequence is that using (2) makes APA more robust
to perturbations and model uncertainties. This is a very im-
portant issue when dealing with highly noisy environments,
time variant model parameters or when the tracking capabil-
ity becomes a major problem.

We show the robust behavior of the APA family from two
approaches: H* optimality and error energy bounds.

3.1 H” Optimality of the APA Family

Perturbations are something that any algorithm has to lead
with in a real world implementation. They have many differ-
ent sources: parameters variation with time, initial conditions

errors, measurement noise, modeling errors, numerical pre-
cision, etc. The robustness is a concept associated with the
sensibility of an algorithm to the perturbations. If we follow
a deterministic framework, an algorithm is robust if it does
not amplify the perturbations energy.

In the middle of the 90’s, Hassibi ef al. present the re-
lationship between H” optimal filters and Kalman filtering
in Krein spaces [3]. We can apply this theory for showing
that the APA family is H” optimal. More precisely, it can be
proved that the APA as in (2) is the solution to:

1
—1
5 87 eI
. j:
Voopi = 1;1f sup - )
pwo{vi}€h, [lwo—Wol>+ 3 B;IHVJHZ
J=1

The value V?‘,a  Tepresents a bound on the energy trans-

fer from the perturbations to the estimation errors. The nec-
essary conditions for the result to be true are exciting input

N
signals, i.e., lim ¥ x/x; = o, and 3; > 0.
N—0; =)

The fact that [3; acts as a weighting sequence for the en-
ergy of the error e;, and thus for e, ; and v;, is an indication
that its importance is not restricted to the numerical instabil-
ity problem.

When the hypothesis of exciting input was used, we as-
sumed that the value of 7 in (3) — which represents the interval
length where the energy is computed — is sufficiently large.
As a consequence, the problem could become of infinite hori-
zon. We can say nothing about what happens to the energy
of the estimation errors just after a noise peak appears at a
precise time instant. This “local behavior” needs a different
approach, which will be treated in the next subsection.

3.2 Local and Global Error Energy Bounds for APA

We wonder if the APA family guarantees that the energy of
the perturbations will never exceed the energy of the esti-
mation errors for all time instants. To do so, we follow the
approach introduced by Rupp and Sayed [7] for LMS type of
algorithms. We define the weight error vector w; = w — Wy,
the a priori error e, ; = X%;_; and the weighting matrix

S, = (BiIL + X{{X,) l.

If we choose [3; > 0 for all i, then S; is positive definite.
Using the APA recursion (2) we show that the following local
bounds for the a posteriori and a priori errors holds:

Theorem 1 At each time instant i € [0, N], the following en-
ergy bounds apply to the a posteriori and a priori errors re-
spectively:

~ _ 2
1Will* + B, [lep.| {<1 it e#0 @
i1 |48 vl ? L =1 1 e =0

~ 112 « .

[[wil +e5,isiea,z’{ <1 if e#0 5)
Wi | +vfispvg L =1 T e =0

Proof: We use some error relations based on its defini-
tions and show that relation

Bi (Wil = 150il1?) + [1vill* = llep.l?,
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in the case of (4) and
(Wit l? = 1l1?) +vi'S; vi — egliS  eas
for (5), are positive. Both facts require only 3; > 0. |

A first interpretation of these bounds is that for all time
instants i, the energy of the estimation errors never exceeds
the energy of the perturbations.

As the local bounds are valid for all i, if a time interval
of length N is taken, global error bounds are obtained as a
generalization. In this case:

I+ 3 B epal
S e <1if3i€[0,N]:e;#0 6
S N T\ =1ifVie[o,N]:e=0 )
517+ 5 7 il
2

N
[ovlP+ 3 eliSiea:

a,i™i

<1lif3ie0,N):e#0 )
_ 5, N =1ifVie[0,N]:e;=0
[§- 1P+ 3 vl'Spv
=

The H” and the error bounds approaches are concerned
with the robustness of the APA family. As the global error
bounds are valid for any interval length, we would like the
two results to be equivalent in the infinite horizon case.

As V;,opt =1 in (3), the two approaches will be asymp-
totically equivalent if:

1\1{13(1)0 Wy = Ww. (8)

By following a similar procedure to the one used in [7]
for LMS type algorithms, this (deterministic) convergence
may be proved.

There is one more thing we would like to point out. For
the first approach we proved that the APA is the algorithm
that minimizes the energy relation (3), over all possible esti-
mation strategies. For the second one, the bound (6) shows
that actually, the APA family can reach a more tight energy
relation, as ||[Wy||? is always positive.

This difference should not despise the H* approach. The
local and global bounds are satisfied by the APA family as
a consequence of its way of finding the system estimation.
On the other hand, the theory of linear estimation in Krein
spaces is a powerful and elegant tool for the design and im-
plementation of H* optimal filters.

There is still the issue of choosing the sequence [3;, which
will be solved in the next section.

4. OPTIMAL REGULARIZATION CHOICE

In this section we propose to maximize the speed of conver-
gence by choosing for each i the value 3; which minimizes
E[||%i||%]. As the weight error recursion is

Wi = Ly —Py) Wi — Xi(XIX;+ BI) vy

i

with P; = Xi(Xf’Xi + BiIL)’le’, if the noise is indepen-
dent of the data matrix, then:

E[|[Wi] ") = E[W/L) (L — Py %]+ r (R Ki),  9)

where K; = E[(XIX; + BI,) "' XIX;(XIX; + B1)7"]
and R, is the correlation matrix of the noise.

4.1 Analysis under the Independence Assumption

If W;_, is independent of P, and the noise is white (with zero
mean and variance szl_), we have from (9):

E[|[Wi|*) = E[|[Wi-1]” + tr (Re, ., E[P}])

Cu(Re, EP) 402K,

with Ry, , being the correlation matrix of the weight error.
Now, we perform a Singular Value Decomposition (SVD)
on the data matrix, i.e., X; = U;X; V. So P; = U;Ap U¥,
where Ap_ is a diagonal matrix with nonzero elements of the
form: (pk)?
(pf)*+ B
and pf are the singular values of X;.
It could also be seen that K; = ViAKl_V{’ , with the cen-
tral diagonal matrix elements represented by:

?
((pf)?+B:)?
By making the replacements in (10), differentiating par-

tially towards [3; — assuming uncorrelation with respect to B
for k # i — and setting it to zero, we find:

(Ap, )ik =

(AR, o =

tr(Rw, \E[U;A,UY]) = oitr (E[V:A, V),  (11)
where we have defined the diagonal matrices:

Bi(pf)? (pf)?
A =7—"0"s, Bnu=—75"—o5 (12)
((PF)>+B)? ' (P +B)?
Solving (11) for the general case requires information of
the correlation matrix of the filter estimation error and the

singular values of the input data matrix. If Ry, |, = val-,l Iy,
from (11), it could be seen that:
P (13)
o O-‘%Vi—l

This result is intuitively correct. When the background
noise becomes large, so should be (; in order to attenuate its
amplification. On the other hand, when the filter estimation
error grows, the regularization parameter should decrease, al-
lowing the algorithm to quickly reestimate the system.

We want to remark that it also holds:

Ueza.i =t (R‘X’i—l E[X,’Xfl]) = O-gvl-,] Ma\fz,a
and replacing it in (13), leads to:
a2Ma?
Bi= %7 (14)

€a,i

which is the result presented in [4]. In that work, white input
excitation and large filter orders were assumed.

4.2 Analysis for Gaussian Hypothesis
We replace the SVD decomposition in (9). Thus,

E[|[%i|P] = E[||Wi-1 | +E[Wff1UiA%,.Uf’vVH]
—2E[W! U;Ap Ul |+ EvIV,Ag VIvi]  (15)
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By defining the k-t4 normalized singular vector as gf? =

1/2 & o
(Ap, )i uy, we can write:

L+1
E[%{ \UiAp Ui | =E[W[ 12 Dt (uf) W]
L+1
= ZE 0 (b)) (16)

If w;_; and gi are assumed to be gaussian distributed,
we can apply the gaussian moment factoring theorem to each

term of (16), leading to:
L+l

ZE llu

+tr (RVNVi—l [UiAf’iU{{])

E[W/ UiAp, Ul'W, 1] [(wf) ;1]

Following a similar process for the last term of (15)
and assuming independence between the input and noise se-
quences, we obtain,

ENVIViAg Vv =tr(Ry,E[ViAg VI])

By making the replacements in (15), differentiating par-
tially towards [3; and setting it to zero, it results that the opti-
mum regularization parameter satisfies:

2tr(Rw, E[U;A, U] —2tr(Ry,E[V:A, VE])
L+1

ZE

+E[<A1~>i>kkv~vf£1uﬂEKAK,.)kk(uwavviq]]

D% E[(Ap e (uf) i)

ZE r, llclézwz 111] [(AP )1/2( ,‘)HWFI]

HE[(Ap ) WL E (A ) (b )] a7

where A, and A, were previously defined in (12). It be-
comes evident the difficulty of finding a close expression for
B; from the optimum condition given by (17). If Ry, and
Ry, , are diagonal, then:

tr (RVNVF] E[UiAliUzH]) —1r (RViE[ViAVinH])
L+1

= (Bog, ,—0;) > El(Ar)ul;

k=1

and when we replace it in (17), we find,

(B3, ~ )3 El(A)ul
Re{ '3 Bl Ak Jaw! E(Ap ! uf) |
—Re{ '3 B wE g il 19

where Re {-} means taking the real part. Now we write W;_;
as a linear combination of the singular vectors uff [11,

1 1

M . .
Wi = z o’ul.

As the vectors form an orthonormal basis and if we as-
sume that af has zero mean and is independent of pf, we
can rewrite the right side of (18) as,

L+1
A )i E[(Ap, k]

S |E[al?
k=1
~E[( A )IENAp )] = 0.

The complex expressions (11) and (17) are optimal for
each analyzed case. When we assume that Ry, , is diag-
onal, both of them become equivalent to the simple result
(13), where 02 ., can be estimated by the method of delayed

coefficients [2].

5. CONCLUSIONS

A modified update was proposed for the APA family, which
includes the explicit regularization factor. The “effective step
size” of the algorithm is between 0 and 1 for all 8 > 0, so
there is no upper bound that could cause instabilities.

Particularly, the explicit regularization factor does not
only help on dealing with numerical precision problems, but
also allows a robust performance against all possible pertur-
bations. This was justified from the H” optimality and the
local error energy obtained.

We also performed an analysis for optimizing [3; to have
maximum speed of convergence. First we used indepen-
dence assumptions and then we dealed with the gaussian
case. Complex expressions were derived, which results in
a simple one if certain conditions on the weight error corre-
lation matrix are assumed.
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