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ABSTRACT
Sparse impulse responses are encountered in many applica-
tions (network and acoustic echo cancellation, feedback can-
cellation in hearing aids, etc). Recently, a class of exponen-
tiated gradient (EG) algorithms has been proposed. One of
the algorithms belonging to this class, the so-called EG± al-
gorithm, converges and tracks much better than the classi-
cal stochastic gradient, or LMS, algorithm for sparse impulse
responses. In this paper, we show how to derive the differ-
ent algorithms. We analyze the EG± algorithm and explain
when to expect it to behave like the LMS algorithm. It is also
shown that the proportionate normalized LMS (PNLMS) al-
gorithm proposed by Duttweiler in the context of network
echo cancellation is an approximation of the EG±.

1. INTRODUCTION

One of the most popular adaptive algorithms available in
the literature is the stochastic gradient algorithm also called
least-mean-square (LMS) [1], [2]. The main drawback of
this algorithm is that it converges very slowly in general with
correlated input signals.

Recently, another variant of the LMS algorithm, called
the exponentiated gradient algorithm with positive and nega-
tive weights (EG± algorithm), was proposed by Kivinen and
Warmuth [3]. This new algorithm converges much faster than
the LMS algorithm when the impulse response that we need
to identify is sparse, which is often the case in network echo
cancellation involving a hybrid transformer in conjunction
with variable network delay, or in the context of hands-free
communications where there is a strong coupling between
the loudspeaker and the microphone [4]. The EG± algorithm
has the nice feature that its update rule takes advantage of the
sparseness of the impulse response to speed up its initial con-
vergence and to improve its tracking abilities compared to
LMS. More recently, a technique known as the proportion-
ate normalized LMS (PNLMS) algorithm [5] has been intro-
duced which has similar advantages for sparse impulse re-
sponses. In [6], a general expression of the mean squared er-
ror (MSE) is derived for the EG± algorithm showing that for
sparse impulse responses, the EG± algorithm, like PNLMS,
converges more quickly than the LMS for a given asymptotic
MSE.

In this paper, we show how to derive several important
algorithms. We explain some interesting links between the
LMS and EG± algorithms, when to expect them to behave
in the same way and that the choice of some parameters of

the EG± is critical. We also show that the PNLMS algorithm
is an approximation of the EG± algorithm.

2. DERIVATION OF THE DIFFERENT
ALGORITHMS

In this section, we show how to derive different variants of
the LMS algorithm. Depending on how we define the dis-
tance between the old and new weight vectors, we obtain
different update rules.

We define the a priori error signal e(n+1) at time n+1
as:

e(n+1) = y(n+1)− ŷ(n+1), (1)

where

y(n+1) = hT
t x(n+1) (2)

is the system output,

ht = [ ht,0 ht,1 · · · ht,L−1 ]T

is the true (subscript t) impulse response of the system, su-
perscript T denotes transpose of a vector or a matrix,

x(n+1) = [ x(n+1) x(n) · · · x(n−L+2) ]T

is a vector containing the last L samples of the input signal x,

ŷ(n+1) = hT (n)x(n+1), (3)

is the model filter output, and

h(n) = [ h0(n) h1(n) · · · hL−1(n) ]T

is the model filter.
One easy way to find adaptive algorithms that adjust the

new weight vector h(n+1) from the old one h(n) is to mini-
mize the following function [3]:

J[h(n+1)] = d[h(n+1),h(n)]+ηε 2(n+1), (4)

where d[h(n+1),h(n)] is some measure of distance from the
old to the new weight vector,

ε(n+1) = y(n+1)−hT (n+1)x(n+1) (5)
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is the a posteriori error signal, and η is a positive constant.
The magnitude of η represents the importance of corrective-
ness compared to the importance of conservativeness [3]. If
η is very small, minimizing J[h(n + 1)] is close to minimiz-
ing d[h(n+1),h(n)], so that the algorithm makes very small
updates. On the other hand, if η is very large, the mini-
mization of J[h(n + 1)] is almost equivalent to minimizing
d[h(n+1),h(n)] subject to the constraint ε(n+1) = 0.

To minimize J[h(n + 1)], we need to set its L partial
derivatives ∂J[h(n + 1)]/∂hl(n + 1) to zero. Hence, the
different weight coefficients hl(n+1), l = 0,1, ...,L−1, will
be found by solving the equations:

∂d[h(n+1),h(n)]
∂hl(n+1)

−2ηx(n+1− l)ε(n+1) = 0. (6)

Solving (6) is in general very difficult. However, if the new
weight vector h(n+1) is close to the old weight vector h(n),
replacing the a posteriori error signal ε(n+1) in (6) with the
a priori error signal e(n + 1) is a reasonable approximation
and the equation

∂d[h(n+1),h(n)]
∂hl(n+1)

−2ηx(n+1− l)e(n+1) = 0 (7)

is much easier to solve for all distance measures d.
The LMS algorithm is easily obtained from (7) by using

the squared Euclidean distance

dE[h(n+1),h(n)] = ‖h(n+1)−h(n)‖2
2. (8)

The exponentiated gradient (EG) algorithm with positive
weights results from using for d the relative entropy, also
known as Kullback-Leibler divergence,

dre[h(n+1),h(n)] =
L−1

∑
l=0

hl(n+1) ln
hl(n+1)

hl(n)
, (9)

with the constraint ∑l hl(n+1) = 1, so that (7) becomes:

∂dre[h(n+1),h(n)]
∂hl(n+1)

−2ηx(n+1− l)e(n+1)+γ = 0, (10)

where γ is the Lagrange multiplier. Actually, the appropriate
constraint should be ∑l hl(n + 1) = ∑l ht,l but ∑l ht,l is not
known in practice, so we take the arbitrary value 1 instead.
This will have an effect on the adaptation step of the resulting
adaptive algorithm.

The algorithm derived from (10) is valid only for positive
weights. To deal with both positive and negative coefficients,
we can always find two vectors h+(n+1) and h−(n+1) with
positive coefficients, in such a way that the vector

h(n+1) = h+(n+1)−h−(n+1) (11)

can have positive and negative components. In this case, the
a posteriori error signal can be written as:

ε(n+1) = y(n+1)− [h+(n+1)−h−(n+1)]T x(n+1)
(12)

and the function (4) will change to:

J[h+(n+1),h−(n+1)] = (13)

d[h+(n+1),h+(n)]+d[h−(n+1),h−(n)]

+
η
u

ε2(n+1),

where u is a positive scaling constant. Using the same ap-
proximation as before and choosing the Kullback-Leibler di-
vergence plus the constraint ∑l [h

+
l (n + 1)+h−l (n+1)] = u,

the solutions of the equations

∂dre[h+(n+1),h+(n)]
∂h+

l (n+1)
−2

η
u

x(n+1− l)e(n+1)+γ = 0,

∂dre[h−(n+1),h−(n)]
∂h−l (n+1)

+2
η
u

x(n+1− l)e(n+1)+γ = 0,

give the so-called EG± algorithm, where

e(n+1) = y(n+1)− [h+(n)−h−(n)]T x(n+1), (14)

and will be further detailed in the next section.
When the parameter space is a curved manifold (non Eu-

clidean), there are no orthonormal linear coordinates and the
squared length of a small incremental vector h(n+1)−h(n)
connecting h(n) and h(n+1) is given by the quadratic form:

dR[h(n+1),h(n)] =

[h(n+1)−h(n)]T G[h(n)][h(n+1)−h(n)]. (15)

Such a space is a Riemannian space. The L × L positive-
definite matrix G[h(n)] is called the Riemannian metric ten-
sor and it depends in general on h(n). The Riemannian met-
ric tensor characterizes the intrinsic curvature of a particular
manifold in L-dimensional space. In the Euclidean orthonor-
mal case, G[h(n)] = I (the identity matrix) and (15) is the
same as (8). Using (15) in (7), we obtain the natural gradient
descent algorithm proposed by Amari [7]:

h(n+1) = h(n)+ηG−1[h(n)]x(n+1)e(n+1). (16)

3. LINK BETWEEN THE LMS AND EG±
ALGORITHMS

Let us define the LMS algorithm [1]:

e(n+1) = y(n+1)−hT (n)x(n+1), (17)
h(n+1) = h(n)+ µx(n+1)e(n+1). (18)

If we initialize hl(0) = 0, l = 0,1, ...,L−1, we can easily see
that:

h(n+1) = µ
n

∑
i=0

x(i+1)e(i+1). (19)

The EG± algorithm is:

e(n+1) = y(n+1)− [h+(n)−h−(n)]T x(n+1), (20)

h+
l (n+1) = u

h+
l (n)r+

l (n+1)

∑L−1
j=0 [h+

j (n)r+
j (n+1)+h−j (n)r−j (n+1)]

,

(21)

h−l (n+1) = u
h−l (n)r−l (n+1)

∑L−1
j=0 [h+

j (n)r+
j (n+1)+h−j (n)r−j (n+1)]

,

(22)
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where

r+
l (n+1) = exp

[
µ ′

u
x(n+1− l)e(n+1)

]
, (23)

r−l (n+1) = exp

[
−µ ′

u
x(n+1− l)e(n+1)

]

=
1

r+
l (n+1)

, (24)

and u is a constant chosen such that u ≥ ‖ht‖1. We can check
that we always have ‖h+(n+1)‖1 +‖h−(n+1)‖1 = u.

By exponentiating the update, the EG± algorithm has the
effect of assigning larger relative updates to larger weights,
thereby deemphasizing the effect of smaller weights. This
is qualitatively similar to the PNLMS algorithm, to be de-
scribed in more detail in the next section, which makes the
update proportional to the size of the weight. This type of be-
havior is desirable for sparse impulse responses where small
weights do not contribute significantly to the mean solution
but introduce an undesirable noise-like variance.

Starting adaptation of the EG± algorithm with h+
l (0) =

h−l (0) = c > 0, l = 0,1, ...,L− 1, we can show that (21)
and (22) are equivalent to:

h+
l (n+1) = u

s+
l (n+1)

∑L−1
j=0 [s+

j (n+1)+ s−j (n+1)]
, (25)

h−l (n+1) = u
s−l (n+1)

∑L−1
j=0 [s+

j (n+1)+ s−j (n+1)]
, (26)

where

s+
l (n+1) = exp

[
µ ′

u

n

∑
i=0

x(i+1− l)e(i+1)

]
, (27)

s−l (n+1) = exp

[
−µ ′

u

n

∑
i=0

x(i+1− l)e(i+1)

]

=
1

s+
l (n+1)

. (28)

Clearly, the convergence of the algorithm does not depend of
the initialization parameter c. Now

hl(n+1) = h+
l (n+1)−h−l (n+1) (29)

= u
s+

l (n+1)− s−l (n+1)

∑L−1
j=0 [s+

j (n+1)+ s−j (n+1)]

= u
sinh

[
µ ′
u ∑n

i=0 x(i+1− l)e(i+1)
]

∑L−1
j=0 cosh

[
µ ′
u ∑n

i=0 x(i+1− j)e(i+1)
] .

Note that the sinh function has the effect of exponentiating
the update, as previously commented.

For u large enough and using the approximations
sinh(a) ≈ a and cosh(a) ≈ 1 when |a| � 1, (29) becomes:

hl(n+1) =
µ ′

L

n

∑
i=0

x(i+1− l)e(i+1). (30)

We understand that, by taking µ ′ = Lµ and for u large
enough, the LMS and EG± algorithms have the same per-
formance. Obviously, the choice of u is critical in practice:

Table 1 The improved proportionate NLMS algorithm.

Initialization:
hl(0) = 0, l = 0,1, ...,L−1

Parameters:
0 < α ≤ 1, δIPNLMS > 0, −1 ≤ κ ≤ 1

ε > 0 (small number to avoid division by zero)

Error:
e(n+1) = y(n+1)−hT (n)x(n+1)

Update:
gl(n) =

1−κ
2L

+(1+κ )
|hl(n)|

2‖h(n)‖1 + ε
l = 0,1, ...,L−1

µ(n+1) =
α

∑L−1
j=0 x2(n+1− j)g j(n)+δIPNLMS

hl(n+1) = hl(n)+ µ(n+1)gl(n)x(n+1− l)e(n+1)

l = 0,1, ...,L−1

if we take it too large, there is not a real advantage using the
EG± algorithm.

4. LINK BETWEEN THE PNLMS AND EG±
ALGORITHMS

Recently, the proportionate normalized least-mean-square
(PNLMS) algorithm was developed for use in network echo
cancelers [5]. In comparison to the NLMS algorithm,
PNLMS has very fast initial convergence and tracking when
the echo path is sparse. The idea behind PNLMS is to up-
date each coefficient of the filter independently of the oth-
ers by adjusting the adaptation step size in proportion to the
magnitude of the estimated filter coefficient. More recently,
an improved PNLMS (IPNLMS) [8] was proposed that per-
forms better than NLMS and PNLMS, whatever the nature
of the impulse response is. Table 1 summarizes the IPNLMS
algorithm. In general, g(l) in the table provides the “propor-
tionate” scaling of the update. The parameter κ controls the
amount of proportionality in the update. For κ = −1, it can
easily be checked that the IPNLMS and NLMS algorithms
are identical. For κ close to 1, the IPNLMS behaves like the
PNLMS algorithm [5]. In practice, a good choice for κ is 0
or −0.5.

How are the IPNLMS and EG± algorithms specifically
related? In the rest of this section, we show that the IPNLMS
is in fact an approximation of the EG±.

For |a| � 1, we have: exp(a) ≈ 1 + a. For µ ′ small
enough, the numerator and denominator of the EG± update
equations can be approximated as follows:

r+
l (n+1) ≈ 1+

µ ′

u
x(n+1− l)e(n+1), (31)

r−l (n+1) ≈ 1− µ ′

u
x(n+1− l)e(n+1), (32)

L−1

∑
j=0

[h+
j (n)r+

j (n+1)+h−j (n)r−j (n+1)] (33)

≈ u+
µ ′

u
ŷ(n+1)e(n+1) ≈ u.
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With these approximations, (21) and (22) become:

h+
l (n+1) = h+

l (n)[1+
µ ′

u
x(n+1− l)e(n+1)], (34)

h−l (n+1) = h−l (n)[1− µ ′

u
x(n+1− l)e(n+1)], (35)

so that:

hl(n+1) = h+
l (n+1)−h−l (n+1) (36)

= hl(n)+ µ ′ h+
l (n)+h−l (n)

‖h+(n)‖1 +‖h−(n)‖1
x(n+1− l)e(n+1).

If the true impulse response ht is sparse, it can be shown
that if we choose u = ‖ht‖1, the (positive) vector h+(n) +
h−(n) is also sparse after convergence. This means that the

elements
h+

l (n)+h−l (n)∥∥∥h+(n)
∥∥∥

1
+

∥∥∥h−(n)
∥∥∥

1

in (36) play exactly the same role

as the elements gl(n) in the IPNLMS algorithm in the partic-
ular case where κ = 1 (PNLMS algorithm). As a result, we
can expect the two algorithms (IPNLMS and EG±) to have
similar performance. On the other hand, if u � ‖ht‖1, it can
be shown that h+

l (n) + h−l (n) ≈ u/L, ∀l. In this case, the
EG± algorithm will behave like the IPNLMS with κ = −1
(NLMS algorithm). Thus, the parameter κ in the IPNLMS
operates like the parameter u in the EG±. However, the ad-
vantage of the IPNLMS is that no a priori information of the
system impulse response is required in order to have a better
convergence rate than the NLMS algorithm. Another clear
advantage of the IPNLMS is that it is much less complex to
implement than the EG±. We conclude that IPNLMS is a
good approximation of EG± and is more useful in practice.
Note also that the approximated EG± algorithm (36) belongs
to the family of natural gradient algorithms [9], [10].

5. SIMULATIONS

In this section, we compare by way of simulation, the differ-
ent algorithms derived in the previous sections. The experi-
ment considers the identification of a single-channel system.
The system impulse response ht to be identified is sparse and
is of length L = 2048. The same length is used for all the
adaptive filters h(n). The sampling rate is 8 kHz and a white
noise signal with 30 dB SNR (signal-to-noise ratio) is added
to the output y(n). The input signal x(n) is a white Gaussian
signal.

Figures 1 shows the convergence of the normalized mis-
alignment, ‖ht − h(n)‖2/‖ht‖2, for all the algorithms. In
this figure, we compare the NLMS, IPNLMS, and EG± algo-
rithms. Clearly, the IPNLMS and EG± algorithms converge
much faster than the NLMS algorithm, while the IPNLMS
and EG± show similar performance. Figures 1 also compare
the algorithms in a tracking situation when after 3 seconds
the sparse impulse response is shifted to the right by 50 sam-
ples. According to this simulation, the IPNLMS and EG±
algorithms track much better than the NLMS algorithm.

6. CONCLUSION

It seems possible to exploit sparsity in adaptive algorithms.
One of the first algorithms to do so is the PNLMS proposed
by Duttweiler in [5]. The PNLMS algorithm was introduced
in the context of network echo cancellation where there is a
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Figure 1: Misalignment of the NLMS (++), IPNLMS (−−), and
EG± (−) algorithms with white Gaussian noise as input signal. The
impulse response changes at time 3 seconds.

strong need to improve convergence rate and tracking. It was
known for a long time that unknown echo paths in the net-
work are most of the time sparse and there are many different
intuitions on how one should take advantage of that. Kivinen
and Warmuth [3] derived the EG± algorithm in the context
of computational learning theory. We have shown here that a
good approximation of the EG± leads to the PNLMS. As a
result, the two algorithms have very similar performance in
all the simulations we have done. We have also shown some
links between the EG algorithms and LMS, so that with ap-
propriate choice of some parameters, the different algorithms
can be identical.
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