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ABSTRACT 

 
In this paper, we present a new Multiple Description Coding 
(MDC) system that enables the progressive transmission of 
images over unreliable channels with variable bandwidth. The 
proposed system employs a new type of quantizers, called 
Embedded Multiple Description Scalar Quantizers (EMDSQ). 
The system relies on wavelet-based QuadTree (QT) coding of 
the significance maps to encode the quantizers’ output, and is 
referred to as Multiple Description-QT (MD-QT) coding. The 
EMDSQ enables the MD-QT coder to provide bit-streams that 
meet the desired features consisting of a high redundancy 
level, fine-grain rate adaptation and progressive transmission 
of each description. Experimental results show that the 
proposed MD-QT system based on EMDSQ yields better rate-
distortion performance in comparison to MD-QT employing 
the embedded Multiple Description Uniform Scalar 
Quantizers (MDUSQ) previously proposed in the literature.  

 
 

1. INTRODUCTION 
 

Communication systems based on diversity techniques have 
become an attractive solution for robust transmission over 
error-prone bandwidth-limited channels. Multiple Description 
Coding (MDC) addresses the problem of coding a source in 
order to be transmitted over a communication network with 
diversity, and, at the decoder level, it allows for extracting 
meaningful information from a subset of the bit-stream.  
Previous research focused on finding the optimal achievable 
rates-distortion regions [1]. Lately, practical compression 
systems that rely on quantization techniques, as proposed in 
[2], [3], were designed in order to meet those theoretical 
boundaries. The design of multiple description scalar 
quantizers (MDSQ) was pioneered in [2], under the 
assumption of fixed-length codes and fixed codebook sizes. 
Significant improvements are reported in [3] in which the 
quantizers’ design is made under a given entropy-constraint, 
and not on a given codebook size. 
The communication robustness over unreliable channels 
provided by the MDC system is strongly correlated with the 
delivery of highly error-resilient bit-streams, a feature 
achievable with a corresponding high level of redundancy. 
Furthermore, for bandwidth-varying channels, it is desirable 
to transmit fine-grain scalable bit-streams. Such a system is 
described in [4] where the progressive MDC algorithm is 
based on multiple description uniform scalar quantizers 
(MDUSQ). For a high level of redundancy and for low bit-
rates, the approach of [4] outperforms the embedded MDC 
algorithm of [5] based on the polyphase transform. In the 
same context, we proposed in [6], [7] a new type of embedded 
multiple description scalar quantizer (EMDSQ), providing a 
fine-grain refinable representation of the input data and 
targeting a high level of redundancy. The embedded quantizer 

design follows the constraint of constructing double-deadzone 
central quantizers for each quantization level.  
In this paper we propose a new wavelet-based MDC system 
that employs the EMDSQ and a customized version of the 
QuadTree (QT) coding of the significance maps algorithm of 
[8]. The system will be referred to as Multiple Description-QT 
(MD-QT) coding. The EMDSQ, by their features, allow the 
MD-QT coder to provide bit-streams that meet the desired 
features consisting of a high redundancy level, fine-grain rate 
adaptation and progressive transmission of each description. 
Moreover, the generalized form of EMDSQ targeting an 
arbitrary number of channels offers the possibility of 
designing realistic coders for practical multi-channel 
communication systems. Such systems reconstruct the central 
channel by using techniques such as synchronization markers 
to isolate the undamaged data from a partially damaged 
received side channel. In this context, for an erasure channel 
model with burst errors, progressive transmission is providing 
quality scalability for the central-channel reconstruction.  
The MDUSQ of [4] and our EMDSQ [6], [7] are incorporated 
in the proposed MD-QT coding scheme. The rate-distortion 
performances of both MDC systems are compared when 
applied on a common dataset. The results demonstrate that the 
MDC system based on EMDSQ achieves systematically better 
rate-distortion performance on a broad range of bit-rates. 
The paper is structured as follows. In Section 2 the EMDSQ 
generalized form for M-channels is introduced. The MD-QT 
coding system is described in Section 3. In Section 4 
comparative coding results are provided, and finally, Section 
5 draws the conclusions of our work. 

 
2. EMBEDDED MULTIPLE DESCRIPTION 

SCALAR QUANTIZERS 
 

Quantization methods based on embedded scalar quantizers 
were previously proposed in the literature – see for e.g. [9]. In 
embedded quantization, the partition cells at higher 
quantization rates are embedded in the partition cells of 
lower-rate quantizers. For the M-channels embedded multiple 
description scalar quantizers we denote the set of embedded 
side-quantizers as ,0m

SQ , ,1m
SQ ,…, ,m P

SQ  with 1..m M= , and the 
set of embedded central-quantizers as 0

CQ , 1
CQ , …, P

CQ , 
where: 1 1 1 11 2 1, 1 2, 2 ,( , ,..., ) ( ) ( ) ... ( )p M p p M p M

k k k k k kC S S SQ q q q Q q Q q Q q
− − − −

= ∩ ∩ ∩  
for any quantization level , 0p p P≤ ≤ . The partition cells of 
any quantizer ,m p

SQ  and p
CQ  are embedded in the partition 

cells of the quantizers ,m P
SQ , , 1m P

SQ − ,…, , 1m p
SQ +  and P

CQ , 
1P

CQ − ,…, 1p
CQ +  respectively. 

For M-channels, the analytical expression of the EMDSQ 
proposed in [6], [7] is defined as follows: 
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mmM
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m p
B p
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Q x sign x k p

M mM m M
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. (3) 

The boundary points are defined as follows: 
, (( 1) ( 1 )( %2))m p p

SupA M M k m M m p= ∆ ⋅ + + + + − , 
, (( 1) ( 1 )( %2))m p p

InfA M M k M m p= ∆ ⋅ + + + − , 
, (( 1) 1 ( %2))m p p

SupB M M k M m p= ∆ ⋅ + + + − , 
, (( 1) ( %2))m p p

InfB M M k m m p= ∆ ⋅ + + − , 
where a    denotes the integer part of a , 0∆ >  is the cell size 
for 0

CQ , and %2 2 2p p p= − ⋅    . The index k +∈Z  determines 
the width of the quantizer granular region and m , 1 m M≤ ≤  
denotes the channel index. 
From the expressions for ,m p

SupA , ,m p
SupB , ,m p

InfA , ,m p
InfB  given 

above, one notices that the cell size ( )p∆ for the side quantizer 
,m p

SQ  at level p and index m depends on the number of 
channels M by ( ) (0)p pM∆ = ∆ , where (0)∆  is the cell size for 
the highest-rate side-quantizer ,0m

SQ , and (0) m∆ = ∆  or 
(0) ( 1 )M m∆ = + − ∆ . 

A noticeable characteristic of the EMDSQ is that the side-
quantizers ,m p

SQ  are non-uniform embedded quantizers. Thus 
for any p, 1 p P≤ ≤  the partition cells are divided into a 
variable number of sub-partition cells. 
The example depicted in Fig. 1 illustrates an instantiation of 
the four-channel EMDSQ. In view of simplification, we 
consider only two quantization levels 0,1p = . Notice that the 
partitions of the side-quantizers ,0m

SQ , 1 4m≤ ≤  are embedded 
respectively in the partitions of the side quantizers ,1m

SQ . 
Moreover, we notice that the side-quantizers ,m p

SQ  are indeed 
non-uniform embedded quantizers: for instance, the cell 2,1

,1S+  
of the second-channel embedded quantizer 2,1

SQ  is divided 
into the three partitions 2,0

,1,0S+ , 2,0
,1,1S+  and 2,0

,1,2S+  of the higher-
rate quantizer 2,0

SQ . On the contrary, the deadzone 2,1
0S  is 

divided into nine partitions 2,0
0,0S , 2,0

,0,1S± , 2,0
,0,2S± , 2,0

,0,3S± , and 
2,0
,0,4S±  respectively. Notice that the central quantizer p

CQ  is a 
double deadzone embedded quantizer with cell-size 

( ) (0)4p p
C C∆ = ∆ , where (0)

C∆ = ∆  is the cell-size of 0
CQ . 

A uniform entropy-coded scalar quantizer is optimal for high 
rates, and nearly optimal for lower rates [9]. Furthermore, for 
input data with symmetric probability density function (PDF), 
the rate-distortion behavior at low rates can be improved by 
widening the partition cell located around zero, that is, by 
using deadzone uniform scalar quantizers [9]. It can be 
noticed that the central quantizer in the EMDSQ [6], [7] is 
indeed a double-deadzone embedded quantizer. Hence, it 
shows the abovementioned characteristics. 

 
3. CODING SCHEME 

 
In this section, we illustrate the use of the EMDSQ into a 
wavelet-based coding scheme, for the particular case of 

2M = . The proposed MD-QT coding system encodes the 
quantizers’ output by using a customized version of the 
wavelet-based QT coding of the significance maps algorithm 
described in [8]. 
 
3.1 Significance map coding 
 
We denote by pT  the significance threshold from the coding 
step corresponding to the quantization level , 0p p P≤ ≤ . 
Denote by 1 2( , )k k=k  the spatial location, where 1k and 2k  
stand for the row and column index, respectively. Denote by 

( , )Q k v  a quadrant with top-left coordinates 1 2( , )k k=k  and 

size 1 2( , )v v=v , where 1v  and 2v  represent the quadrant width 
and height respectively. In view of simplification we assume 
identical power-of-two quadrant dimensions v1 and v2, i.e. 

1 2 2Jv v= =  for some J. The corresponding quadrant delimiting 
binary elements in the significance map p is denoted 
by ( , )p

bQ k v . 
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Fig. 1. Four-channel EMDSQ. The side quantizers are ,m p

SQ , 
with 1...4m = , 0,1p = . The central quantizer is p

CQ . The negative 
side is a mirrored version of the positive side shown above. 

The wavelet image ( , )Q=W 0 V  is a matrix of 1 2V V×  elements, 
with (0,0)=0 , 1 2( , )V V=V . For any wavelet coefficient, its 
absolute value and sign are denoted as ( )w l  and ( )s l  
respectively, where 1 2( , )l l=l  with 1 10 l V≤ ≤  and 2 20 l V≤ ≤ . 
The significance of the wavelet coefficients from any 

( , )k v WQ ∈ , (1,1)≠v  with respect to the applied threshold pT  
is recorded in ( , )p

bQ k v  and is determined via the operator pσ : 

(1,1)

1 ( ) ( , ), ( )
( ( , ))

0 ( ) ( , ), ( )v

l k v l
k v

l k v l

p
p

p

if w Q w T
Q

if w Q w T
σ

≠

 ∃ ∈ ≥= 
∀ ∈ <

 

 
 (4) 

Notice that the significance operator pσ  determines the 
significance of a quadrant but not the significance of a 
coefficient. For an individual wavelet coefficient we no 
longer apply the significant operator pσ , and instead, we 
utilize the quantizer index allocation operator, which we 
denote by ( ( ))wδ l . 
The EMDSQ by their structure present the particularity that 
different partition cells at quantization level p  are divided 
into different numbers of partition cells at the quantization 
level 1p −  as shown in section 2. Thus, we deduce that in 
order to perform the index allocation, the wavelet coefficients 
have to be compared against the values of the partitions’ 
boundary points at a certain quantization level p . Consider 
that an arbitrary partition cell at level p  will be divided into 
N partition cells at level 1p − . The index allocation operator 
δ  determines the codeword associated to each quantized 
coefficient as follows: 

, 1 ,

2 ,1 ,2

1 ,0 ,1

( )

...
( ( ))

( )

( )

N N NS if T w T

w
S if T w T

S if T w T

δ δ

δ δ

δ δ

δ

− ≤ <

=  ≤ <
 ≤ <

l

l
l

l

 

 

 

 (5) 

where the boundary points are denoted as ,nTδ , with 0 n N≤ ≤  
and ,0 ,1 ,... NT T Tδ δ δ< < < . The manner in which the threshold 

pT  and boundary points ,nTδ  are computed will be described 
further under section 3.2. 
For the first quadtree-partitioning pass [8], the significance of 
the wavelet image W  is tested with respect to the threshold 

PT . If ( ) 1Pσ =W , the significance map ( , )p
bQ 0 V  of the 

wavelet image W  is split into four quadrants ( ), 2P
b iQ k V , 

1 4i≤ ≤ , each having half the original parent size, with 
ik indicating the origin of each quadrant. The descendent 

significant quadrants are then further divided until the leaf 
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nodes (i.e. wavelet coefficients) are isolated. For the leaf 
nodes, the symbols nS  ( 0 n N< ≤ ) are allocated by applying 
the index allocation operator ( ( ))wδ l . Thus, the significance 
pass records the positions l  of all the leaf nodes newly 
identified as significant, using a recursive tree structure of 
quadrants (or a quad-tree structure). 
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Fig. 2. Four-level representation of 1, p

SQ  for two-channel 
EMDSQ for an example with granular region ranging from 0 to 
23. The significance map coding is performed with respect to the 
set of thresholds ,1pT  with the rate of decay given by (7). 

Once the positions and the corresponding symbols of the 
significant leaf nodes are encoded during the significance 
pass, p  is set to 1P − . Next, the significance pass is restarted 
to update the entire quad-tree structure by identifying the new 
significant leaf nodes. During this stage, only the significance 
of the previously non-significant nodes and quadrants, i.e. 
those for which 1( ( ))lw Sδ = and 1( ( , )) 0p Qσ + =k v  respectively, 
is encoded, and the significant ones are ignored since the 
decoder has already received this information. Subsequently, 
the corresponding refinement pass is activated for the 
significant leaf nodes. The refinement pass is performed with 
respect to the corresponding refinement threshold ,p m

rT . The 
described procedure is repeated, until the complete wavelet 
image is encoded, i.e. 0p = , or until the target bit-rate is met. 
 
3.2 Coding algorithm 
 
In this section, we illustrate the manner in which the 
significance thresholds, refinement thresholds and boundary 
points are computed, in the particular case of 2M = .  
As explained before, the coding passes performed by the 
proposed MD-QT coding system are the significance pass, 
employing the significance thresholds ,p mT , 0 p P≤ ≤  
followed by the refinement pass, utilizing the refinement 
thresholds ,p m

rT , with m , 1 2m≤ ≤  denoting the channel index. 
For the lowest quantization rate P , the starting thresholds 
corresponding to each channel are ,1 2PT T=  and ,2PT T=  
respectively. Since it is not desirable that the quantizer is 
characterized by an overload region, the T value is related to 
the highest absolute magnitude maxw  of the wavelet 
coefficients as: 

( )2 maxlog 3 1
2

w
T

 + =  (6) 
Hence, the maximum number of quantization levels is 

2 maxlog ( 3) 1P w= +   . In general, excepting the lowest 
quantization rate P , the significance thresholds used for each 
channel m , 1 2m≤ ≤  are given by:  

, (( 1)%2)
( 1 ( 1)%2) 2

3
4

P x m x mm
x m

T
T − + −

+ + +  
=  (7) 

with P x p− = , and 1x ≥ . The values mT  are of the form 
1 2T T=  and 2 4T T=  respectively.  

Fig. 2 depicts the first channel EMDSQ with granular region 
ranging from 0 to 24. For the two-channel EMDSQ case, 
excepting the highest quantization rate P , the description of 
the quantizers reveals that half of the partition cells at level p  

are divided into three partition cells at level 1p − , while the 
other half are not divided at all. Thus, we consider three index 
allocation operators. In the case p P= , we use the index 
allocation operator ( ( ))wα l  to assign for the leaf-nodes in the 
quadtree the symbols ,1Sα  and ,2Sα  as follows: 

, ,
,2 ,1 ,2

,
,1 ,1

( )
( ( ))

0 ( )

P m P m

P m

S T w T
w

S w T

α α α

α α

α
 ≤ <= 

≤ <

l
l

l
 (8) 

where , ,
,1

P m P mT Tα = and ,
,2 3P mT Tα = . 

In the case p P<  two operators ( ( ))wβ l  and ( ( ))wγ l  are 
considered, one for each of the two partition types. For the 
partitions cells that are divided in three, the index allocation 
operator ( ( ))wβ l  is expressed as: 

, ,
,3 ,2 ,3

, ,
,2 ,1 ,2

, ,
,1 ,0 ,1

( )

( ( )) ( )

( )

p m p m

p m p m

p m p m

S T w T

w S T w T

S T w T

β β β

β β β

β β β

β

 ≤ <

= ≤ <


≤ <

l

l l

l

 (9) 

where the relations between the corresponding partition 
boundary points are , , ( )

,1 ,0
p m p m p

CT Tβ β= + ∆ , , , ( )
,2 ,0 3p m p m p

CT Tβ β= + ⋅ ∆  and 
, , ( )
,3 ,0 4p m p m p

CT Tβ β= + ⋅ ∆ , where  ( ),
,0 (( )%2)2 P xP x m

CT x mβ
−− = + ∆ , 1x ≥ . 

Apart from this, for the remaining half of the partition cells 
that are not divided we assign through the index allocation 
operator ( ( ))wγ l  only one symbol ,1Sγ  as follows: 

, ,
,1 ,0 ,1( ( ))  for ( )p m p mw S T w Tγ γ γγ = ≤ <l l  (10) 

The relation between the corresponding partition boundary 
points is , , ( )

,1 ,0 2p m p m p
CT Tγ γ= + ∆ , where ( ),

,0 (( 1)%2)4 P xP x m
CT x mγ

−− = + + ∆  
The purpose of the refinement pass is to perform the index 
allocation for coefficients that have already been coded as 
significant at the previous significance passes. The index 
allocation is performed with respect to the new updated 
values of the boundary points. In order to apply the index 
allocation, the coefficient that must be refined has to be 
rescaled with respect to the refinement pass threshold ,p m

rT  
given by: 

, ,,
,1 ,3max( , )p m p mp m

rT T Tγ β= . 
In order to improve the compression results, the output of the 
MD-QT coder (significance symbols, quantizer index 
symbols, signs symbols) are further entropy coded with an 
adaptive arithmetic coder [10] that uses four different 
probability models. One model is used to encode the quadrant 
significance symbols. Another model is used for the sign 
symbol encoding. Finally, another two models are utilized to 
entropy code the symbols generated by the index allocation 
operators ( ( ))wα l  and ( ( ))wβ l  respectively. Since the MD-QT 
output for the partition cells that are not divided is represented 
by only one symbol ,1Sγ , it is completely redundant to further 
encode these symbols.  

 
4. EXPERIMENTAL RESULTS 

 
To perform the comparison between the EMDSQ and 
MDUSQ [4], both quantizers are applied on a memoryless 
Laplacian source of random generated numbers with zero 
mean and 60.34σ = , simulating a wavelet subband. Fig. 3 
shows that comparable results are obtained for the side 
channel(s) and that the EMDSQ outperforms MDUSQ for the 
central channel. Similar experimental results were obtained 
varying the standard deviation within the range 12 90σ< < .  
Similar to EMDSQ, the MDUSQ has been integrated in the 
MD-QT coding scheme, resulting into a common entropy-
coding system for both types of quantizers. The results shown 
in Fig. 4 and Fig. 6 obtained on the Lena and Goldhill images 
respectively, reveal that on the central channel the EMDSQ 
outperforms MDUSQ with 0.52-1.08 dB. Similarly, the 
results obtained on a common image data set given in Table 5 
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show that in comparison to MDUSQ, the MDC system 
employing the EMDSQ provides constantly better rate-
distortion performances on the central channel for all the 
rates. 
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Fig. 3. Comparative side and central rate-distortion performance 
between EMDSQ and MDUSQ. The quantizers are applied on a 
256x256 matrix of Laplacian random generated numbers with 
zero mean and 60.34σ = . 
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Fig. 4. Comparative side and central rate-distortion performance 
obtained on Lena 512x512 with the MD-QT codec employing 
EMDSQ and MDUSQ respectively.  

Image Quant. 0.125 0.25 0.5 1 2 4
EMDSQ 23.90 25.72 28.52 32.56 37.75 44.52
MDUSQ 23.63 24.87 28.20 32.16 37.15 42.85
EMDSQ 30.98 34.31 37.94 41.46 44.82 50.04
MDUSQ 30.15 33.40 37.15 40.66 43.78 48.88
EMDSQ 23.32 25.26 28.08 31.78 37.06 44.43
MDUSQ 22.59 24.80 27.50 30.87 36.21 43.08
EMDSQ 27.80 30.79 33.53 36.04 38.60 44.11
MDUSQ 27.28 30.14 32.97 35.45 37.78 42.21
EMDSQ 32.64 35.22 37.75 39.84 42.41 47.71
MDUSQ 32.11 34.74 37.13 39.23 41.73 46.63

0.58 0.67 0.58 0.66 0.80 1.43

Zelda

average mean diff.

Cameraman

Peppers

Barbara

Bird

 

Table 5. Performance (PSNR) of the central reconstruction of 
MD-QT coding based on EMDSQ and MDUSQ for bit-rates 
ranging from 0.125 to 4 bpp. 

 
5. CONCLUSIONS 

 
The paper presents a new type of wavelet based MDC 
systems, called here MD-QT, that relies on embedded 
multiple description scalar quantizers and on the quadtree 
coding of the significance maps. The EMDSQ fulfill the 
requirement of a high redundancy level and enable the MD-
QT codec to perform progressive image transmission over 
unreliable channels. For the targeted high redundancy level, 
the MD-QT system based on EMDSQ outperform the MD-QT 
system based on MDUSQ for the central channel. Thus, for an 
erosion channel model characterized by burst errors, coding 

techniques based on EMDSQ provide consistently better rate-
distortion performance. Also, for the particular case when an 
entire channel is lost, the experiments show comparable 
results for the side channels. Moreover, the generalization of 
the codec for an arbitrary number of channels leads to the 
possibility of designing realistic codecs for practical multi-
channel communication systems. 
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Fig. 6. Comparative side and central rate-distortion performance 
obtained on Goldhill 512x512 with the MD-QT codec employing 
EMDSQ and MDUSQ respectively. 
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