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ABSTRACT

Recently, a maximum likelihood estimate has been proposed
for road vehicle speed based on two omnidirectional micro-
phones. It is observed that this estimate may be severely
biased if the target is moving fast and/or the acoustic sig-
nal present high frequency components. We undertake a
bias analysis to explain this effect and present a modifica-
tion which is capable of drastically reducing the bias at the
same computational complexity as the original estimate.

1. INTRODUCTION

In order to develop effective management strategies, traffic
management systems require accurate estimation of parame-
ters such as traffic density and flow, for which a sensor infras-
tructure capable of automatic monitoring of traffic conditions
must be deployed. Many alternatives exist for collecting data
about the transit of road vehicles at a given location. Sys-
tem design must include the choice of a particular sensor as
well as the development of adequate signal processing and
parameter estimation methods.

Traffic sensors commercially available at present include
magnetic induction loop detectors, radar, infrared or ultra-
sound based detectors, video cameras, and microphones. All
of them present different characteristics in terms of robust-
ness to changes in environmental conditions; manufacture,
installation and repair costs; safety regulations, etc. A de-
sirable system would be passive, cheap, and easy to install
and maintain while able to operate in all-weather day-night
conditions. These goals can be achieved with microphone
based schemes; however, most commercially available sys-
tems tend to be expensive since they use highly directive
microphones. The use of cheap (i.e. omnidirectional) sen-
sors must be compensated for with more sophisticated signal
processing algorithms. We address the problem of how to
directly estimate road vehicle speed from the acoustic sig-
nals received at a pair of omnidirectional microphones lo-
cated next to the traveling path.

Previous work [5, 7] presented an approximate maximum
likelihood (ML) estimate of the vehicle speed in such a set-
ting. This estimate requires neither modeling or knowledge
of the acoustic source (thus being effectively “blind”), nor
intermediate time delay estimation steps, which are poten-
tially troublesome in real applications [4, 5, 6]. Being based
on modified crosscorrelations, it is well suited to DSP imple-
mentation. However, we have noted that the estimate may be
biased for fast speeds and/or high frequency components of
the acoustic source. Here we present a bias analysis in order�

Supported by a Ram ón y Cajal grant of the Spanish Ministry of Sci-
ence and Technology.

to explain this observation. This will also expose the source
of the bias, suggesting a modification of the estimate which
will solve the bias problem.
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Figure 1: Geometry of the problem

2. PROBLEM DESCRIPTION

As shown in Figure 1, the microphones M1, M2 are separated
2b m and placed at D m from the lane center. The acoustic
source travels at constant speed v0 on a straight path along
the road. The time reference is set at the closest point of
approach (CPA), i.e. t � 0 when the source is equidistant to
M1 and M2. The propagation delays from the source to M1,
M2 are τi

�
t;v0 � � di

�
t;v0 ��� c, where di

�
t;v0 � is the distance

from the source to microphone Mi,

d1 � 2 � t;v0 � �	� D2 
 �
v0t � b � 2 �

and c is the sound propagation speed. Define also the angle
and distace between the source and the array center

α
�
t;v0 � � atan

v0t
D

� d
�
t;v0 � � D

cosα
�
t;v0 ��


Let the sound wave emitted by the vehicle be s
�
t � , assumed

deterministic but unknown. Taking into account sound atten-
uation, we can express the received signal at sensor Mi as

ri
�
t � � si

�
t � 
 wi

�
t � � s

�
t � τi

�
t;v0 ���

d
�
t;v0 � 
 wi

�
t � � (1)

with w1
��� � , w2

��� � additive noise processes, assumed station-
ary, independent, zero-mean Gaussian with psd N0 � 2 W/Hz
in the band � f ��� fs � 2 ( fs � sampling frequency). The prob-
lem is to estimate v0 given the observed signals ri

�
t � , and
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without knowledge of the sound wave s
�
t � or its power spec-

trum. In [7] an approximate ML estimate was derived, given
by v̂0 � argmaxv ψ

�
v � where, with

� � T � 2 � T � 2 � the obser-
vation window,

ψ
�
v � ∆��� T � 2� T � 2 r1

�
t � ∆τ

�
t;v ��� r2

�
t � dt 
 (2)

The differential time delay (DTD) ∆τ
�
t;v � is given by

∆τ
�
t;v � ∆� τ2

�
t;v � � τ1

�
t;v � (3)� � 2b

c
sinα

�
t;v � if b � D � 1. (4)

This estimate is based on the fact that the noiseless received
signals approximately satisfy

s2
�
t � � s1

�
t � ∆τ

�
t;v0 ��� 
 (5)

It exploits knowledge of the DTD parametric dependence
with v to accordingly time-compand the signal r1

�
t � before

performing the crosscorrelation (2), which must be computed
over the whole observation window for each candidate speed.
Implementation with sampled signals can be done efficiently
as described in [7].

3. BIAS ANALYSIS IN THE NARROWBAND CASE

Vehicle-generated acoustic waveforms can be well described
by the sum of two components [2]: the first one consists of
a series of harmonically related tones, produced by the ro-
tating parts of the engine, while the second is broadband in
nature and is due to tire friction noise. Hence, this class of
signals does not fit well into a narrowband model. Never-
theless, the analysis of the mean value of the log likelihood
ψ
�
v � in the narrowband scenario, in which s

�
t � � Asinωt,

will provide the required insight into the bias problem. More-
over, as shown in [5], the mean log likelihood function in the
wideband case can be closely approximated by the superpo-
sition of those corresponding to each individual frequency,
weighted by the power spectrum of the acoustic waveform.

A similar analysis of E �ψ �
v ��� was carried out in [7], but

the simplifications introduced resulted in an apparent unbi-
asedness of the estimate. For a more accurate result, we must
take into account the fact that the vehicle is moving during
the propagation of its acoustic signature to the microphones.
To do so, we introduce the following ‘delay error’ term:

ξ∆
�
t;v0

� v � ∆� τ1
�
t � ∆τ

�
t;v � ;v0 � � τ1

�
t;v0 � (6)� � 2bv0

c2 	 sinα
�
t;v0 � 
 b

D
cosα

�
t;v0 ��
 sinα

�
t;v � � (7)

the last step being valid for � v � v0 � small. This term becomes
necessary for the analysis due to the fact that (5) does not
hold with equality, especially for high speed values.

E �ψ �
v ��� is the value of (2) after replacing ri by si. Note,

s1
�
t � ∆τ

�
t;v ��� � s

�
t � ∆τ

�
t;v � � τ1

�
t � ∆τ

�
t;v � ;v0 ���

d
�
t � ∆τ

�
t;v � ;v0 � 
 (8)

In the denominator of (8), we can make d
�
t � ∆τ

�
t;v � ;v0 � �

d
�
t;v0 � . However, we must be more accurate with the analo-

gous term in the argument of s
��� � . If s

�
t � � Asinωt, then

s1
�
t � ∆τ

�
t;v ���� A

sin �ω �
t � ∆τ

�
t;v � � τ1

�
t;v0 � � ξ∆

�
t;v0

� v �����
d
�
t;v0 � 
 (9)

Therefore, the product of (9) with

s2
�
t � � A

sin �ω �
t � τ2

�
t;v0 �����

d
�
t;v0 �

becomes

A2

2
cos �ω �

∆2τ
�
t;v0

� v � � ξ∆
�
t;v0

� v �����
d2
�
t;v0 � 
 (terms in 2ωt)

(10)
where

∆2τ
�
t;v0

� v � ∆� ∆τ
�
t;v0 � � ∆τ

�
t;v � 


When integrating (10), the contribution of the ‘double-
frequency’ term is small compared to that of the other term,
so it can be neglected. On the other hand,

cos �ω �
∆2τ

�
t;v0

� v � � ξ∆
�
t;v0

� v ����� �
cos �ω ∆2τ

�
t;v0

� v ��� cos �ωξ∆
�
t;v0

� v ���
 sin �ω ∆2τ
�
t;v0

� v ��� sin �ωξ∆
�
t;v0

� v ��� 
 (11)

At this point we need an approximation for the terms involv-
ing ∆2τ

�
t;v0

� v � . By visual inspection of this function, the
following approximation seems well suited:

∆2τ
�
t;v0

� v � � Rsin � 2atan
�
zt ��� 
 (12)

where R and z are found by imposing that the two sides of
(12) have the same slope at t � 0, and that they peak at the
same time instants. These conditions lead to

R � b
�
v � v0 �

c � 2v0v
� z � � 2v0v

D 

Using (12), the sine and cosine terms in (11) can be ex-
panded, in view of the Fourier series

f
�
r sin x � � ∞

∑
k 
 � ∞

Jk
�
r � f

�
kx � �

where f
��� � is either sin

��� � or cos
��� � (see e.g. [1]), and where

Jk is the kth order Bessel function of the first kind. If we only
retain the dominant term in the summations, corresponding
to k � 0, the following approximation is finally obtained:

E �ψ �
v ��� � J0 � ωb

�
v � v0 �

c � 2v0v � A2

2
� T � 2� T � 2 cos �ωξ∆

�
t;v0

� v ���
d2
�
t;v0 � dt� ��� �

∆� Q∆
�
v �



(13)

If one makes ξ∆ � 0 in (13), the expression for E �ψ �
v ���

given in [7] is recovered. Note that the J0 factor in (13) has
its maximum at v � v0. Thus, if Q∆

�
v � remained constant

with v, the bias of the approximate ML estimate could be
expected to be small. From (7), it is seen that if ωbv0 � c2 �
π , then the product �ωξ∆ � will remain small so that cosωξ∆

�
1 and Q∆

�
v � � constant. On the other hand, if �ωξ∆ � is not

small enough, then Q∆
�
v � cannot be regarded as constant.

Although an accurate closed-form expression for Q∆
�
v � in

such case is not available, it can be said that in general it does
not peak at v � v0, and therefore neither does the product
J0
�
ωR � Q∆

�
v � in (13). The ensuing bias will increase with

source frequency and speed, as well as with sensor spacing.
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Figure 2: Plots of E �ψ �
v ��� for a narrowband source of 1

(solid), 1.5 (dashed) and 2 kHz (dashdot). D � 10 m, 2b � 1
m, T � 2 s, fs � 10 kHz.

Fig. 2 plots E �ψ �
v ��� for a fast narrowband source with

frequency 1, 1.5 and 2 kHz moving at 100, 120, 140 and
160 km/h. It is clear how, as the frequency of the source in-
creases, the lobe of E �ψ �

v ��� associated to v � v0 becomes less
and less prominent. Eventually, its peak is overtaken by that
of a secondary lobe, in which case the resulting bias is rather
severe (possibly of several tens of km/h). Since power spec-
tra of vehicle acoustic signatures contain significant compo-
nents in the range 20 Hz - 2 kHz [3], this behavior is clearly
unacceptable, especially in scenarios such as freeways where
vehicles are expected to travel at high speeds.

4. BIAS REMOVAL

As seen in section 3, the bias in the estimate is due to the
delay error term ξ∆

�
t;v0

� v � defined in (6), whose origin is
traced back to the approximation (5) becoming less accu-
rate for high frequencies and speeds. In theory, the modified
crosscorrelation that should be maximized is that of r2

�
t � and

r1
�
u
�
t;v ��� , where u

�
t;v � is a warping of the time axis, param-

eterized by v, such that the noiseless received signals satisfy
s2
�
t � � s1

�
u
�
t;v0 ��� . Here we have neglected the effect of

time-axis warping in the attenuation term 1 � d
�
t;v0 � affecting

the received signals, since this envelope varies much more
slowly with time than the acoustic signature s

�
t � .

Therefore, from (1), it is seen that the function u
�
t;v � that

we would like to determine must satisfy

t � τ2
�
t;v0 � � u

�
t;v0 � � τ1

�
u
�
t;v0 � ;v0 � (14)

which is an implicit equation in u
�
t;v0 � . We can use a first-

order approximation of τ1
�
u;v0 � around u � u

�
t;v0 � � t,

τ1
�
u;v0 � � τ1

�
t;v0 � 
 ∂τ1

�
t;v0 �

∂ t

�
u � t � �

which, once substituted in (14), leads to the expression

u � t � � ∆τ
�
t;v0 �

1 � ∂ τ1 � t;v0 �
∂ t

�
where ∆τ

�
t;v0 � is the DTD as before, defined in (3). There-

fore we find that u � u
�
t;v0 � � t � δτ

�
t;v0 � , where

δτ
�
t;v � ∆� ∆τ

�
t;v �

1 � ∂ τ1 � t;v �
∂ t


 (15)

This suggests replacing the DTD ∆τ
�
t;v � by the modified

DTD δτ
�
t;v � in the formulation of the log likelihood func-

tion (2). Observe that, since the specific shape of the time-
axis warping function does not affect the implementation of
the estimate (see [5, 7]), this modification does not introduce
any additional complexity in the computation of ψ

�
v � .

As in section 3, we can introduce the delay error term
ξδ

�
t;v0

� v � in such a way so as to have

s1
�
t � δτ

�
t;v ��� � s

�
t � ∆τ

�
t;v � � τ1

�
t;v0 � � ξδ

�
t;v0

� v0 ���
d
�
t;v0 � �

ignoring again the effect of time delays in the attenuation
factor. Therefore, this delay error term is defined as follows:

ξδ
�
t;v0

� v � ∆� δτ
�
t;v � � ∆τ

�
t;v � � τ1

�
t;v0 �
 τ1

�
t � δτ

�
t;v � ;v0 � 
 (16)

If we now substitute in (16) the first-order approximation

τ1
�
t � δτ

�
t;v � ;v0 � � τ1

�
t;v0 � � δτ

�
t;v � ∂τ1

�
t;v0 �

∂ t
�

then, using (15), a little algebra shows that

ξδ
�
t;v0

� v � � δτ
�
t;v � 	 ∆τ

�
t;v0 �

δτ
�
t;v0 � � ∆τ

�
t;v �

δτ
�
t;v � 
 � (17)

suggesting that at v � v0 this delay error term must be small.
In fact, from (15), one has the following:

Property 1. The delay error term ξδ
�
t;v0

� v � defined in
(16) satisfies ξδ

�
t;v0

� v0 � � O � � δτ
�
t;v0 ��� 2 � for all t.

Now, using (16), one can proceed to find the expected
value of the log likelihood function when δτ

�
t;v � is used

instead of ∆τ
�
t;v � . Following the steps of section 3, it is

found that, similarly to (13),

E �ψ �
v ��� � J0 � ωb

�
v � v0 �

c � 2v0v � A2

2
� T � 2� T � 2 cos �ωξδ

�
t;v0

� v ���
d2
�
t;v0 � dt� ��� �

∆� Qδ
�
v �



Hence, as a consequence of Property 1, Qδ

�
v � is ap-

proximately maximized for v � v0, since in that case
cos �ωξδ

�
t;v0

� v0 ��� � 1 for all t. Thus, the bias of the esti-
mate obtained with the modified DTD δτ

�
t;v � will be much

smaller than that of the original approach. Note that a prop-
erty analogous to Property 1 does not hold for the delay error
term ξ∆

�
t;v0

� v � of (6), for which a first-order approximation

τ1
�
t � ∆τ

�
t;v � ;v0 � � τ1

�
t;v0 � � ∆τ

�
t;v � ∂τ1

�
t;v0 �

∂ t
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Figure 3: E �ψ �
v ��� for a narrowband source of 1 (solid), 1.5

(dashed) and 2 kHz (dashdot), using the modified DTD func-
tion. D � 10 m, 2b � 1 m, T � 2 s, fs � 10 kHz.

shows that

ξ∆
�
t;v0

� v � � � ∆τ
�
t;v � ∂τ1

�
t;v0 �

∂ t 

Since

∂τ1
�
t;v �

∂ t
� v

c
vt 
 b�

D2 
 �
vt 
 b � 2 �

we see that unless � v0 � � c, ξ∆
�
t;v0

� v0 � cannot be neglected.
Finally, if b � D � 1, then one can make

∂τ1
�
t;v �

∂ t
� v

c
vt � D�

1 
 �
vt � D � 2 � v

c
sinα

�
t;v � 


Thus, using this and (4), we arrive at the following expression
of the modified DTD:

δτ
�
t;v � � � 2b

c
sinα

�
t;v �

1 � v
c sinα

�
t;v � 
 (18)

Fig. 3 plots the function E �ψ �
v ��� obtained under the same

conditions as in Fig. 2, but using the modified DTD function
(18) in the crosscorrelation. Clearly, the undesirable behavior
of the original estimate observed in Fig. 2 has been avoided.

To confirm the efectiveness of the modified estimate in
a wideband scenario, we tested it using a synthetic signal
s
�
t � generated as a realization of a Gaussian process with flat

power spectrum in the range � f � � fs � 2. Fig. 4 shows the bias
of the original and modified speed estimates as a function of
source speed, averaged over 103 runs. Although a modest
amount of bias is present in the modified scheme (less than
1 km/h at v0 � 160 km/h), it is much smaller than that of the
original approach, as desired.
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Figure 4: Bias of the speed estimate for the original and mod-
ified DTD functions for a wideband Gaussian source and sev-
eral observation windows. D � 10 m, 2b � 1 m, fs � 10 kHz.

5. CONCLUSIONS

The modification presented effectively reduces the bias of the
speed estimate to tolerable levels, at the same computational
cost as the original approach. The algorithm is amenable to
implementation in off-the-shelf digital signal processors that
can be deployed at the sensor locations, so that only the value
of the estimated parameters need be transmitted to the con-
trol center. This reduces dramatically the bandwidth require-
ments of the sensor network.
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