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ABSTRACT

Time-frequency representation based estimation of multi-
component signal parameters is considered. A new adap-
tive threshold combined with a pattern recognition tool is
proposed to separate signal components from the mixture.
The proposed algorithm is applied to knock signal analysis
in spark ignition engines.

1. INTRODUCTION

Knock of combustions can lead to serious problems in spark
ignition car engines, e.g., environment pollution, mechani-
cal damages, and reduced energy efficiency. Careful spark
ignition control prevents the engine from frequent knock.
The main issue in knock signal analysis is knock detection,
but detailed knowledge of knock parameters including those
of in-cylinder pressure and structure-borne sound can also
be important. An interesting topic based on knock signal
analysis is the optimal positioning of piezoelectric devices
used for vibrations recording. Methods for knock detec-
tion are reviewed in [1]. We will focus on the analysis of
pressure and vibration signals caused by knock. Resonance
frequencies depending on piston position, in-cylinder tem-
perature and velocity of sound in the combustion chamber
were investigated by using the finite element method in [2].
High pass filtered pressure and vibration signals in the case
of knock can be assumed as multicomponent FM signals.
In this paper, parameters of the components will be esti-
mated by using time-frequency representations (TFR). An
adaptive threshold is applied to the TFR in order to sepa-
rate signal components. Several other papers also deal with
TFR based methods in knock signal analysis [3, 4]. The
Wigner distribution (WD) and the S-method (SM) are used
to estimate knock signal parameters in [5, 6]. For precise
parameter estimation, several combustion processes are av-
eraged and positions of resonance frequencies are estimated
from resulting TFR. An analysis of combustion parameters
based on a single signal observation is described in [7]. The
so-called “peeling method” for parameter estimation from
the multicomponent signal is applied. But this method can
be inaccurate for signals with varying amplitude or in a
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noisy environment or if the distance between components
is varying. In this paper an adaptive threshold is applied
for the determination of the signal component positions in
the TF plane. The fact that TFRs are highly concentrated
around the instantaneous frequency (IF) is used for thresh-
old determination. An additional criterion is applied to
remove components caused by noise or interferences. Sig-
nal components are separated in the TF plane by using the
modified grass-fire algorithm [8]. The IF's of the signal com-
ponents are estimated based on the maxima positions or the
moments of the TF component. Other parameters as am-
plitude and initial phase are estimated in a straightforward
manner. The algorithm is tested by simulated and real-life
signals. Note that the proposed algorithm does not assume
any knowledge of signal support regions in advance.

2. SIGNAL MODEL AND REGION OF
INTEREST

Consider a multicomponent signal z(t) = Zil xi(t) + v(t)

where z;(t) = A;(t)exp(jpi(t)), for t > t; where t; is
the signal component appearance instant. Assume that
|[dA;(t)/dt| < |depi(t)/dt| for ¢ = 1,..., P and Vt (ampli-
tudes are slow-varying compared to phases), and ¢j(t) #
¢5(t) for Vt (IFs are non-intersecting functions). The TFR
of this signal can be written as TF, (t,w) ~ Y1, TFy, (t,w)+
Q(t,w), where Q(t,w) is caused by noise and (cross-)inter-
ferences between signal and noise components. Assume
that, in the used TFR, Q(¢,w) can be neglected and that
signal components are highly concentrated along the IF,
TE,,(t,w) ~ 2w AZ(t)6(w — $(t)). We will use the SM as
the TFR [9]:

SM(t,w) = |STFT(t,w)]*+

L *
2R [ZH STFT(t,w + IAw)STFT* (t,w — 1Aw)] , (1)

where Aw is the frequency step and STFT(t,w) is the short-
time Fourier transform (STFT):

STFT (t,w) = STFT(nAt, kAw) =
N/2-1 .
Z N z((n + m)At)w(mAt) exp(—jkmAwAt) (2)

where At is sampling rate. The SM can be highly concen-
trated on the IFs of the signal components while avoiding
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Fig. 1. TFRs and component segmentation for the syn-
thetic signal: (a) SPEC; (b) SM; (¢) R(t,w); (d) IF estima-
tion (dotted lines exact IF; solid line - estimates).

interferences between signal components for appropriate L.
The selection of parameter L is discussed in [10].

The first step in our procedure is to recognize the region
of the signal components in the TF plane. This is denoted
as R(t,w), where R(t,w) = 1 means that point (¢,w) be-
longs to the signal components, while R(¢{,w) = 0 means
that (¢,w) is outside of signal components. The function
R(t,w) known as the region-of-interest in pattern recogni-
tion terminology and indicating the existence of the signal
components is determined based on an adaptive threshold
as

R(t,w) =1if X2, TF:(1,0)/ g, TF(1,0) >p
and TF,(r,6) > max[gms(t), 77z], 3)

and = 0 elsewhere, where A, and By, are narrow and wide
regions centered around the considered point (¢,w). In sim-
ulations mg(t) = maxg TFy(t,6) is the maximum of the
TFR in the considered instant while v, = max, g T Fy (T, 9)
is the maximum of the TFR in the entire plane. Reasons
for selection of these criteria are: (a) If (¢,w) is an IF point
then the ratio between signal energy in the narrow and the
wide regions around the considered point is high, otherwise,
this ratio is significantly smaller. (b) Some relatively weak
components but with large magnitudes compared to the
neighbor points could be recognized as a signal. Two addi-
tional criteria are introduced in (3) to avoid this problem.
The first removes all components with a smaller amplitude
than the preassigned percentage of the TFR maximum in
the considered instant and the other removes points with a
weak TFR.

Selection of the parameters in (1). Rectangular shaped
regions Ay, and By, are considered: A, = [t — TaAt,t +
TAAL] X [w — QaAw,w + Q4 Aw] with a size of (274 +1) X
(294 +1) TF points and By, = [t —TeAt, t+ T At] X [w —
QpAw,w + QpAw] with a size of (2IB + 1) x (2025 + 1)
TF points. Assume that the TF components are well sepa-
rated, i.e., for more than (2Qp + 1)Aw along the frequency
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Fig. 2. TFRs and component segmentation for knock pres-
sure signal: (a) SPEC; (b) SM; (c) R(¢,w); (d) Segmented
components depicted in various gray scales.

axis and that the TFR of the considered signal component
is concentrated in a single point at each instant exactly on
the IF. Let the value on IF be ©, while the average value of
the TFR outside of the signal component be £, and © > ¢.
Then the ratio ), TFu(7,0)/> g, TF:(7,0) is approx-
imately equal to (274 + 1)/(2Ts + 1) if (¢,w) is on the IF
while it is (274 +1)(2Q4 +1)/(2T5 + 1)(2Q5 + 1) if (¢, w)
is outside the IF. Thus, the parameter p should satisfy,

(2TA+1)(2Q4+1) 2T 4 +1
BTo D 0s+D) <P < 3Tt1- (4)

It can be seen that T4 < Tp and Q4 < Qp. The IF of com-
bustion signals in this application is relatively slow vary-
ing, see Section IV. Therefore, we selected T4 = T = 20.
Results generally do not vary significantly for different T4
and Tp. For signals with fast variations in the IF, T
and Tp should be small. Since our goal is the separation
of close signal components, values 24 and Q2p should be
chosen as small as possible. In simulations, Q4 = 1 and
Qp = 3 are set. Thus, parameter p should be selected
within 3/7 < p < 1. We selected p close to the lower bound,
p = 0.5, since the considered signals are non-noisy and it
is required to keep relatively weak components. In higher
noise environments the parameter p should be greater than
in this application.

The other criterion in (3) is introduced to remove TF
regions, influenced by noise or by interferences, satisfying
the first criterion. In order to keep weak signal components,
very small values for ¢ and r should be adopted. Values
g = 1.5% and r = 0.1% are used in simulations, where
similar results are obtained with any ¢ < 2% and r < 1%.

3. SIGNAL COMPONENTS SEPARATION

The grass-fire algorithm used in the pattern recognition [8]
for components separation from a binary image R(t,w) has
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Fig. 3. IF estimates of signal components with reconstruc-
tion of the signal components.

been applied. The search for the first point R(to,wo) = 1
(grass phase) is performed. All points R(7,6) = 1 such that
there is a path between (7,0) and (to,wo) passing through
the points that belong to R(t,w) = 1 (fire phase) are as-
signed to the particular signal component. The selected
component is removed from the binary image R(t,w) and
the search is repeated for a new “grass” point. The algo-
rithm stops when no “grass” points exist anymore. The
R(t,w) can be written as: R(t,w) =, max R;(t,w), where

R;(t,w) are regions of detected components; T' is the num-
ber of separated parts of R(t,w). Assume that signal re-
gions are ordered in such a way that region R;(t,w) contains
higher energy than R;1+1(t,w). We will neglect all compo-
nents with small energy compared to the entire signal en-
ergy. It means Q(t,w) =max R;(t,w), will not be con-

sidered since signal energy in the region R;(t,w), 7 > p,
is small, ZR]-(t,w) TFo(7,0) < Yy TF(T,0). Alter-
native criterion for selecting the number of signal compo-
nents can be obtained by using the fact that p should be
equal to P if the number of signal components is known
in advance. For example, it could be known that a con-
sidered engine produces specific resonance frequencies in
the case of knock. In our simulation all regions produc-
ing less than 1% of the signal energy are removed from the
analysis. The aim of this criterion is similar to the sec-
ond criterion in (3) and it can be used to further relaxed
choice of parameter ¢ and r. Signal parameters can be
estimated from signal regions R;(t,w),? = 1,...,p as fol-
lows: 1. The IF can be estimated based on the maxima of
Wi(t) = argmax, TFy(t,w)R;i(t,w), for t € [, tic], where
t;iy and t;e. are estimated instants of the knock component
appearance and disappearance. In order to refine the es-
timate, the frequency moment of the TFR could be used,
Wi(t) = > WwT'Fe(t,w)Ri(t,w)/ >, TFx(t,w)Ri(t,w). The
frequency moment can be used here since the amount of
noise in this application is small. 2. The signal phase
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Fig. 4. Reconstruction of combustion knock signal: orig-
inal signal - dotted line, reconstructed signal - solid line.
Two zones from upper graph are magnified below.

(up to ambiguity in the initial phase) can be estimated
as ¢i(t) = [, tt‘i: w;(t)dt; 3. The signal can be dechirped

as §i(t) = ai(t) exp(—ji(t)), for t € [tiv, tie] and §i(t) =
0 elsewhere. Amplitude and initial phase (A;(t), ¢:(t)) can
be extracted by low-pass filtering of §;(¢) using a classical
setup.

4. EXAMPLES

Simulated signal. In order to illustrate the accuracy of the
proposed method we considered a sum of five signal com-
ponents:

z(t) = Zf ) Aqu(t — to) exp(—as|t — to| — jat® /2 + jbit)

(5)
where u(t) = 1 for ¢ > 0 and u(t) = 0 elsewhere, and
A; = 0541401, a; = 0.6+ 3¢, a = 32w, to = 0.1, and
b = (6 —)32m, ¢ = 1,...,5. The considered interval is
t € [0,1]. The sampling rate is A¢t = 1/512. The spectro-
gram (SPEC) of this signal (SPEC(t,w) = |STFT(t,w)|?)
using a Hanning window of width N = 256 is depicted in
Fig.1a. It can be seen that components are spread in the
TF plane. The SM (L = 1) is better concentrated, Fig.1b.
The proposed algorithm is applied to the SM (parameters
p=0.5,¢q=1.5% and r = 0.1%) and the region R(t,w) is
depicted in Fig.1c. The estimated IF of the signal compo-
nents are given in Fig.1d. Exact IFs of the signal compo-
nents w;(t) = at —bi,i = 1,...,5, are represented with dot-
ted lines. High accuracy can be seen in this case. From this
simulation it can be concluded that the algorithm gives an
accurate estimation of the time-varying signal component
parameters.

Knock signals. We consider a knock pressure signal
recorded from a VW Passat engine at 1200 rpm. Note that
the signal is high-pass filtered with a cut-off frequency of
3000 Hz. The sampling rate is At = 1072 ms and the sig-
nal contains 1280 samples. The SPEC and the SM with
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Fig. 5. TFRs and component segmentation for noisy knock
vibration signal: (a) SPEC; (b) SM; (c¢) R(t,w); (d) Seg-
mented components depicted in various colors.

the same window as in the previous example are shown in
Fig.2a,b. Parameter L in the SM is selected to be small
(L = 1) to avoid interferences between close signal com-
ponents. The algorithm with the same parameters as in
the previous example is applied to the signal and R(t,w)
is depicted in Fig.2c. The grass-fire algorithm is applied to
the binary image R(t,w) and components with small energy
(less than 1% of the signal energy) are removed, Fig.2d. The
IF estimates are given in Fig.3. Reconstructed signal com-
ponents are shown in the same figure. A signal reconstruc-
tion is shown in Fig.4 with two focused segments, where the
original and the reconstructed signal are given for compar-
ison. The algorithm is tested on 50 pressure and vibration
signals recorded at 1200, 1750, 2000, 3000 and 3500 rpm.
Results are summarized in Table 1. As a quality measure of
the algorithm, the correlation coefficient between the origi-
nal and the reconstructed signal is considered. The average
of the correlation coefficient is above 0.85 (Table 1). The
worst result (0.8092) is achieved for the 31-st vibration sig-
nal recorded at 1200 rpm. The TFRs and signal regions are
shown in Fig.5. It can be seen that the signal contains more
noise than the previous one and the algorithm with para-
meters selected for a non-noisy signal case produces numer-
ous components in the R(t,w),see Fig.5c. However, after
elimination of the regions producing small energy we ob-
tained accurate estimates of the signal components, Fig.5d.
Here, a small correlation coefficient means that we elim-
inated some noise influenced components by the proposed
approach and that a small correlation coefficient is expected
in this case.

5. CONCLUSION

An algorithm for adaptive selection of signal component re-
gions in the TF plane is proposed and applied to knock
signal estimation. The selection of the algorithm parame-

Norm. covariance min max mean <0.85
1200rev/min | pres | 0.8270 | 0.9446 | 0.9080 | 1
vibr | 0.8092 | 0.9215 | 0.8787 | 4
1750rev/min | pres | 0.8694 | 0.9501 | 0.9132 | O
vibr | 0.8267 | 0.9319 | 0.8754 | 6
2000rev/min | pres | 0.8191 | 0.9366 | 0.8976 | 2
vibr | 0.8303 | 0.9160 | 0.8819 | 4
3000rev/min | pres | 0.8410 | 0.9487 | 0.9078 | 1
vibr | 0.8356 | 0.9394 | 0.8992 | 1
3500rev/min | pres | 0.8382 | 0.9548 | 0.9193 | 2
vibr | 0.8658 | 0.9457 | 0.9111 | O

Table 1. Normalized covariance between original and re-
constructed signals in 50 trials. min - minimal covari-
ance; max - maximal covariance; mean - average covariance;
<0.85 - number of trials with covariance less than 0.85.

ters is discussed. The algorithm is tested on simulated and
real-life signals. The performance of the algorithm is mea-
sured by using the correlation coefficient between the origi-
nal and the reconstructed signal. The experimental results
are promising.
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