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ABSTRACT

A relatively large class of information theoretical mea-
sures, such as mutual information or normalized en-
tropy, have been used in multi-modal medical image
registration. Even though the mathematical founda-
tions of the different measures were very similar, the
final expressions turned out to be surprisingly different.
Therefore one of the main aims of this paper is to en-
lighten the relationship of different objective functions
by introducing a mathematical framework from which
several known optimization objectives can be deduced.
Furthermore we will extend existing measures in order
to be applicable on image features different than image
intensities and introduce “feature efficiency” as a very
general concept to qualify such features.

The presented framework is very general and not at all
restricted to medical images. Still we want to discuss
the possible impact of our theoretical framework for
the particular problem of medical image registration,
where the feature space has traditionally been fixed to
image intensities. Our theoretical approach though can
be used for any kind of multi-modal signals, such as for
the broad field of multi-media applications.

1 INTRODUCTION

The signal processing community has recently been pay-
ing an increasing attention to integrated approaches for
dealing with multi-modal signals. In particular the use
of information theoretic quantities, such as mutual infor-
mation, has had a big success. For example the medical
imaging community is very reliant upon mutual infor-
mation to parametrically register multi-modal medical
images [1, 2]. But also other applications, such as audio-
video (multi-media) processing, started to benefit from
integrating different signals which are physically of com-
pletely different nature and to explore their mutual (but
unknown) relationship [3].

In this paper, we describe our recent developments
in multi-modal signal processing. They are in fact
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closely related to the approach of information theoret-
ical feature extraction and selection for classification
[4]. Therefore we will start with a short review of this
topic, before transposing it into the framework of multi-
modal signals. Using Fano’s inequality [5] and the data-
processing inequality [6], we derive a probabilistic rea-
son for using mutual information for multi-modal sig-
nal processing. This information theoretical framework
shows that the restriction to a particular kind of signal
features (such as gray levels for multi-modal medical im-
ages) can naturally be abandoned. In fact the presented
information theoretical derivation indicates clearly that
we can very easily build multi-modal algorithms which
automatically select and extract the optimal elements
within a predefined family of features.

In order to get a more intuitive feeling and interpre-
tation about the developed approach, we will describe
some of its possible implications for multi-modal medical
image registration. For example we will show that nor-
malized entropy [7], an overlap-invariant entropy mea-
sure for multi-modal medical image registration, can be
seen as a particular case of our framework. This gives
a more general explanation on when to use mutual in-
formation and when to use normalized entropy, also for
applications outside the medical imaging community.

2 Why mutual information for multi-modal sig-
nals?

Our mathematical derivation is highly related to infor-
mation theoretical feature extraction and selection for
classification. Therefore we first want to recall the jus-
tification to use mutual information in this field. Af-
terwards we present our own derivation in the case of
multi-modal signals which will lead to a probabilistic
interpretation of mutual information in the context of
multi-modal signals.

2.1 Fano’s Inequality for Classification

As shown in fig. 1, the task of classifying a signal into
a set of classes can be modelled by a Markov Chain [4].

It is interesting to interpret classification as a Markov
chain C — X — F — (C as Fano’s inequality [5]



Bayesian Source

&
P(C) || P (X|C)

X s c
— | (X ) (e C(F) | m—

Figure 1: Learning optimal features for classification
with examples can be mathematically interpreted as a
Markov chain [4]. C represents the random variable of
the learning sample of the classes and X are the asso-
ciated observations generated by its conditional proba-
bility density function Px|c(X|C). The features F' are
extracted from X with the feature extractor ¢(., ) and
are used to estimate the output C of the classifier.

gives a lower bound of the error probability of miss-
classification P. = Pr(C # C = C(F)) [4]:
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where C' is a random variable (RV) modelling the learn-
ing sample of the classes. X is the RV of the obser-
vations from the Bayesian source and is conditioned on
the discrete RV C'. F'is a RV representing the features
extracted from the initial RV X with a feature extractor
g(., @), characterized by «. Finally C' is the RV mod-
elling the probability distribution of the output of our
classifier. H(.) is the Shannon entropy of a RV, I(.,.)
is the Shannon mutual information [8] of a pair of RVs
and || is the number of elements in the range of C (e.g.
for classification the number of classes).

No hypothesis about the specific classifier has been
taken for eq. 1. So the inequality just quantifies how
well we can classify at the best when using a specific
feature space F. Unfortunately it is impossible to find
an upper bound for the probability of error when we
use Shannon’s expression of entropy [9]. Hence the best
we can do is minimizing this lower bound, so that a
suitable classifier can do well. Observing that H(C)
as well as log |¥| is constant, we have to maximize the
mutual information I(C, F) in order to minimize this
lower bound.

Therefore in the sense of error probability, we have to
select/extract those features F' that contain the largest
information about the classes C.

2.2 Fano’s Inequality for Multi-modal Signal
Processing

We want to show that we can associate Markov chains
with multi-modal signals as well. This allows us to build
feature related quality measures for multi-modal signal
processing algorithms in the same sense as the probabil-
ity of error of eq. 1.

In fig. 2 we schematically show the realization of
two signals of different modality from the same physical
scene. Sampling the obtained continuous signal into a
discrete representation can be modelled by a RV S which
is uniformly distributed over the set of possible measure-
ment “positions”. Or more specifically, the RV S gen-
erates the possible sampling positions of the signals: in
an image the pixel/voxel coordinates and in a video se-
quence the time coordinate of the frames. For instance
a 3D image contains ng, X n, x n, voxels, the probabil-
ity that a certain measurement had been performed at

coordinates (i, j, k) is P(s = (i,7,k)) = —~—,Vs €S
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Figure 2: Markov chains can be built from a pair of
multi-modal signals. They use the joint probability be-
tween the final features (Fxy and Fy) as the connecting
block.

This initial random variable S can be seen as the
starting block of two related Markov chains (Fig. 2):
starting from S we can model the specific measurement
X (resp. Y) of the initial signals as RVs conditioned on
the outcome of S. What is exactly measured is the fea-
ture selection step. For instance in an image, for each
sample position (4, j, k) generated from the RV .S we can
measure the intensity at that position, but also the gra-
dient, Gabor response, or why not the image intensity
at position (i + 49,5 + jo,k + ko), %0, jo and ko being
constants, etc. We will come back to this in section 3.
Furthermore S gives a physical correspondence between
X and Y as we measure both signals at the same posi-
tion in the sampling space of S'. Obviously X and YV
can also model multi-dimensional feature spaces, which
might ask for an additional feature extraction step. This
means we project the measured features into lower di-
mensional sub-spaces of X and Y. Such sub-spaces are
again RVs and we denoted them Fx and Fy in fig.

ISometimes S is not identical for both signals. For example
two images of different modality might have different dimensions.
For such cases we just want to make reference to interpolators
which can build the bridge between the two respective sampling
spaces [10], [11].



2. The physical correspondence of the measurements
X and Y, resp. Fx and Fy (both are conditioned on
the same sampling RV S), makes it possible to link the
two signals probabilistically through a joint probability
distribution [12].

Interpreting the realization of multi-modal signals as
a stochastic process as described above allows the con-
struction of two related Markov chains:

S — X — FX N F)C/St N Yest N Sest (2)
S =Y — Fy — F$h— Xt — gest, (3)

Just as for the case of classification, we can find lower
bounds of the probabilities of error P,y = Pr(S¢? # S)
(Markov chain eq. 2) and P,y = Pr(S¢? # S) (Markov
chain eq. 3) that the final outcomes of the Markov
chains S¢¢ (the estimated value of S) are not the initial
values S. We get respectively for eq. 2 and eq. 3:
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For a detailed derivation the reader is referred to [13].

The mutual informations I(Fy, F$t) and I(Fx, FE?)
are determined form the same joint probability distri-
bution estimated by non-parametric probability estima-
tion [12] (for example joint histogramming). From the
symmetry of mutual information it follows that both
lower bounds are equal, so that minimizing them si-
multaneously equals maximizing the mutual information
between the feature representations of the multi-modal
signals.

In fact eq. 4 and 5 give simply a lower bound of the
probability of making an error when mapping the sam-
pling space of one signal into the sampling space of the
second signal of a corresponding multi-modal couple.
For example it estimates the minimal error probabil-
ity when generating a magnetic resonance image from
a computer tomography image or when estimating a
video sequence (e.g. the speaker’s mouth motion) from
a speech signal. These probabilistic mappings are mod-
elled as the Markov chains of eq. 2 and 3.

It is therefore clear that to select, within a family of
features, those features that best capture the relation-
ship between the two RVs it is necessary to chose those
with the highest mutual information. The optimal fea-
ture selection therefore appears as an optimization prob-
lem.

2.3 Feature Efficiency

There exists one danger though when simply maximiz-
ing the mutual information in order to minimize the
lower bounds of eq. 4 and 5. To visualize this danger,
let us use that for any pair of random variables X and Y
we have H(X,Y) > I(X,Y) and ZEHAM) > j(x y)
to weaken them:
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and
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v
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Eq. 6 and 7 both indicate that the error bounds can
be decreased by selecting those features that increase the
marginal entropies H(Fx ) and H (Fy ) without consider-
ing their mutual relationship (this is equivalent to max-
imizing the joint entropy H(Fx,Fy), as we also have
H(Fx, Fy) Z H(Fx) and H(Fx, Fy) Z H(Fy)) This
would result in adding superfluous information to the
feature space RVs Fx and Fy. What we really want
though is selecting the features that selectively add the



information that determines the mutual relationship be-
tween the signals while discarding superfluous informa-
tion. Mathematically we want to maximize the bounds
of eq. 6 and 7 but also minimize the bounds of eq. 4
and eq. 5.

For this aim we define a feature efficiency coefficient
which measures if a specific pair of features is efficient in
the sense of explaining the mutual relationship between
the two multi-modal signals while not carrying much su-
perfluous information. The problem of efficient features
in multi-modal signals is closely related to determining
efficient features for classification. Our proposed coef-
ficient e(X,Y) of a pair of RVs X and Y is defined as
follows:

I(X,Y)
e(X,Y) = HX,Y) € [0,1]. (®)

Maximizing e(X,Y") still minimizes the lower bound
of the error probabilities, but also minimizes the joint
entropy H(X,Y') which results in maximizing the weak-
ened bounds of eq. 6 and 7. Looking for features that
maximize the efficiency coefficient of eq. 8 will therefore
look for features which are highly related (large mutual
information) but haven’t necessarily much information
(marginal entropy)?.

Interestingly there is a functional closely related to
e(X,Y) that has already been widely used in multi-
modal medical image processing, even though it’s
derivation was completely different. It was called nor-
malized entropy NE(X,Y) [7] and was derived as an
overlap invariant optimization objective for rigid regis-
tration:

H(X)+ H(Y)

NE(X,Y) = X T)

—e(X,Y)+1€[L,2].
(9)

The derivation was specific for medical image reg-
istration and arose from the problem that mutual in-
formation might increase when images are moved away
from optimal registration when the marginal entropies
increase more than the joint entropy decreases. This
is equivalent to our mathematically derived problem of
feature efficiency above, but for the special case of image
registration. Obviously maximizing NE(X,Y) of eq. 9
is equivalent to maximizing the efficiency coefficient of
eq. 8.

2.4 Generalizing Feature Efficiency

We want to introduce a short chapter that should en-
large the vision of feature efficiency for multi-modal sig-
nals.

It is very interesting to note that in the early years
of information theoretical multi-modal signal process-
ing, joint entropy H(.,.) was also an optimization ob-

2Because of the range [0, 1] of e(X,Y), this functional is some-
times called “normalized measure of dependence” [14].

jective of choice. Interestingly this statistic had to be
minimized in order to get for example good registra-
tion. Looking at the deduced error bounds of eq. 4, 5
and particularly 6, one realizes that minimizing joint en-
tropy does mot minimize these error bounds of eq. 4 and
5. On the contrary, it actually maximizes the weakened
bound of eq. 6 and therefore contradicts error bound
minimization. The result were very “efficient” features,
but with relatively large error bounds (e.g. mapping
a black on a white image). This results for example
in disconnecting the images during the registration pro-
cess. We employed the same property in the previous
chapter but only in combination with error bound mini-
mization to separate the superfluous information in the
signals from the predictive information.

These arguments are very general. Nevertheless they
could have resulted in other definitions for feature effi-
ciency than eq. 8, such as

I(X,Y)

e(X,Y) H(X)+H(Y) (10)
I(X,Y)S
e(X,Y) = FEATE (11)

While the first example is a variant equivalent to eq.
8, as it simply uses the weakened inequality of eq. 7
instead of eq. 6, the second is an extension of e¢(X,Y),
that can be generalized as follows:

I(X,Y)"

XY)= ——FFr—
W= vy

n € [0,1]. (12)
We call an element of this class of functions the feature
efficiency coefficient of order n. The three cases of n =
0, n=1and n = % represent:

e n = 0: We emphasize entirely on the feature ef-
ficiency without caring about the resulting lower
bound of the error probabilities (minimizing joint
entropy). The algorithm will always converge to-
wards image representations where all the voxels of
an image has been assigned the same single feature
value.

e n = 1: We emphasize on minimizing the lower er-
ror bound without caring about the efficiency of the
features (maximizing mutual information). The al-
gorithm would converge towards an image repre-
sentation where each voxel has been assigned a dif-
ferent feature value.

e n= %: We put equal emphasize on minimizing the
lower error bound and on feature efficiency (maxi-
mizing normalized entropy).

The two objectives of on the one hand minimizing the
lower error bounds and on the other hand maximizing



feature efficiency are therefore contradictory. The user
has to choose an appropriate order n of eq. 12 for a
given problem. For example order % has shown to be
very interesting for medical image registration [7, 15]. In
fig. 3 we show a quantitative sketch of feature efficiency

for different orders of n.

‘ Minimize Joint Entropy: n=0 ‘

‘ Maximize Efficiency Coefficient: n=0.5

R

Feature Efficiency

| Maximize Mutual Information: n=1

/

Lower Error Bound

Figure 3: The sketch puts the efficiency coefficients for
different orders n into a quantitative relationship. The
contradictory optimization objectives of minimizing the
lower error bound, but maximizing the feature efficiency
have to be combined in a suitable way for a given prob-
lem. In the case of medical images, n = % has shown to
work fine, as it results into an optimization functional

equivalent to normalized entropy [7].

3 Multi-Modal Medical Image Registration

We will now explicitly build the bridge to the particu-
lar problem of medical image registration. To do this
we simply interpret image registration as a particular
case of feature selection. At first sight this might look
quite strange, but is actually quite intuitive: which ge-
ometric transformation selects the features (e.g. image
intensities) for the voxel coordinates of the floating im-
age so that the error bound of eq. 4 and 5 is minimized,
respectively the efficiency coefficient of eq. 8 is max-
imized? This is exactly the feature selection example
that we introduced in section 2.2.

The Markov chain model for multi-modal signals (eq.
2 and 3) revealed several interesting points about medi-
cal image registration, which are summarized as follows:

e Multi-modal image registration can be looked at as
a parametric feature selection to minimize the lower
error bounds of the Markov chains of eq. 2 and 3.

e Using maximum MI as the feature selection objec-
tive function is equivalent to minimizing the lower
bounds of eq. 4 and 5.

e Using maximum normalized entropy as the feature
selection objective function is equivalent to deter-
mining efficient features in the sense of eq. 8.

e The choice of image intensities for image registra-
tion might be appropriate in some cases, but the
described framework allows the use of more com-
plex features or feature vectors.

Mathematically we can formulate the general frame-
work of feature efficiency (eq. 8) for multi-modal image
registration as follows:

[ﬁ)pt’ﬁ;(;vt’ﬁ;pt} = arg _max e(FXaT{(ﬁY))a
teR™ Fx CFx,Fy CFy

(13)
where Fx and Fy are the initial feature space represen-
tations of the reference and floating image, from which
we want to extract and select the most efficient features
(i.e. which have the largest efficiency coefficient).  is
the vector of transformation parameters of the geomet-
ric transformation T} of the floating image. m is deter-
mined by the particular transformation model, e.g. m is
12 for affine and 6 for rigid-body registration. It has just
an instructive reason that we write the transformation
t separately from Fy. In fact the transformation space
R™ of { spans a sub-space of the much larger feature
space Fy of the floating image.

The possible applications of the general framework
developed in chap. 2 might still appear in some ob-
scurity. Therefore we would like to test the approach
with three clinically important applications®. We used
the BrainWeb magnetic resonance simulator [17] to get
the utilized datasets and to control the results for their
accuracy.

3.1 Affine registration of multi-modal medical
images
Multi-modal affine registration is a very important task
for medical image registration as it gives a good ini-
tialization for several non-rigid registration algorithms
[18, 19]. In this study, we registered 3D MR~scans onto a
3D CT reference image of another patient (inter-patient)
and compared the intensity based MI and the MI be-
tween other features extracted from the images, namely
the norm of the gradient of the images [20]. The results
are shown in figure 4. For rigid registration the qual-
ity of the results is comparable, while for affine trans-
formations the global maximum of intensity based MI
might not correspond to a good registration and the pre-
sented feature space defines a much better result. The
edgeness defined by the gradient emphasizes contours in
the medical images while the intensity based MI over-
emphasizes the volumetric information in the scans and
therefore risks to neglect finer but important features
in the images. An example is the skull and the brain:
the brain covers lots of volume while the human skull is

3In what follows, we used a massively parallel, multi-scale ge-
netic optimization [16] scheme to maximize mathematical expres-
sions of the form of eq. 13. Unfortunately we don’t have space to
describe the specific implementation in more detail.



a relatively fine but anatomically important structure.
Therefore the intensity based registration favors the sta-
tistical matching of the brain. On the other hand the
gradient based MI reflects the statistical presence of sur-
faces. As a result, the skull and the brain have about the
same importance and a compromise for their fitting is
obtained. Figure 4, in particular the images e/f), shows
a significant improvement with this approach. Please
refer to [20] for more details on this.

Figure 4: a) is one slice of the CT-target image. In b),
the contours of the target image are superposed on the
floating MR-scan. In ¢) and d) we see the results after a
rigid optimization, when using resp. the intensity based
MI and the edgeness MI. In e) and f) we show the corre-
sponding results for affine registration. In e) and f) we
recognize a significant improvement with the gradient
based MI; resp. that the global maximum of intensity
based MI doesn’t correspond to good registration.

3.2 Registration and Quantification

Medical images are more or less noisy representations
of the patient’s anatomy. The noise has a negative im-
pact on statistical image registration. Some approaches
to minimize the influence of noise are based on initial
filtering of the datasets (e.g. anisotropic filtering [21]),
or even on anatomical segmentation to extract the in-
formation of the images that is really relevant for reg-
istration. In this example we therefore try a very naiv
way to extract the representative anatomical informa-
tion in the medical images while discarding the redun-
dant noise. We use simple image intensity quantification
which varies the number of bins for the joint probability
estimation. But decreasing the number of bins obviously
decreases the marginal entropies of the image represen-
tations, therefore simply maximizing the MI of eq. 4 and
5 is dangerous. We rather use the efficiency coefficient
of the quantified images to find the optimal number of
quantification intervals as well as the geometrical reg-
istration parameters. Mathematically we can write the

W

Figure 5: Image a) shows the reference image and c) the
initial floating image. In e) we show the rigidly regis-
tered result. Images b), d) and f) show the quantized
outputs of a), ¢) and e) with the optimal number of bins.
Images g) to 1) show an experiment equivalent to a) to
f), but with noisier datasets. The contours of b), resp.
h), are outlined in c) to f), resp. i) to 1).

optimization objective as follows:

7, e 3] =

arg max
[tnx,ny|€[R™,Z+ Z+]

e(@nx (X), T{(Qny (Y))), (14)

where X and Y are the probability densities of the refer-
ence and floating image intensities respectively. nx and
ny are the number of bins used for the density estima-
tion of X and Y and % is the vector of the parameters of
the geometric transformation of the floating image. m
is the dimension of ¢ and is determined by the particular
transformation model, e.g. for rigid-body we have 6 and
for affine 12 parameters. Results for rigid registration
are shown in fig. 5.

This shows nicely that the quantification task during
the registration converges towards anatomical segmen-
tation of the initial images. Therefore the feature effi-
ciency coefficient of eq. 8 is not only capable of register-
ing the images correctly, but of simultaneously extract-
ing the anatomical information in the datasets. The
labels associated to the different quantification intervals
represent the anatomical information present in both
initial images, while the noise is redundant information
that can be discarded by the efficiency coefficient dur-
ing the registration. This is equivalent to what several
pre-processing algorithms aim to do (e.g. anisotropic
filtering).



3.3 Image Registration with Bias-correction

Interventional imaging modalities suffer frequently from
a large bias field. This makes image registration partic-
ularly difficult. Nevertheless it would be of particular
interest to register pre-operatively acquired scans of dif-
ferent modalities onto the interventional datasets. In
this section we want to show that the presented frame-
work allows easily to register images with large bias
fields. The approach simply combines minimum entropy
bias-correction [22] with MI based image registration.
From the developed theory, one can recognize immedi-
ately that MI is not appropriate for this task as mini-
mizing entropy contradicts obviously the maximum MI
principle of eq. 4 and 5. Therefore maximizing directly
the mutual information would not correct the bias field
even though the error bounds of eq. 4 and 5 would be
minimized. Just as in chap. 3.2, this is a typical ex-
ample of inefficient features. Rather than maximizing
MI, we want to maximize the efficiency coefficient of
the bias-corrected image intensities/features (eq. 8).
The resulting mathematical formalism can thereafter
be written as follows: Let’s p € R™' parameterize the
polynomial bias-correction of [22], where m; is deter-
mined by the degree of the polynomials. Furthermore
we have to determine the parameters ¢ € R™2 of the
geometric transformation, where msy is the number of
parameters that determines the transformation. In our
specific application, we optimized over rigid-body trans-
formations (msg equaled 6). Mathematically we have:

[t°% p°P'] = arg  max
[t,ﬁ]GRnll+"l2

e(X, T{(Pp(Y))),  (15)
where the parameters pPP! specify the optimal bias-
correction and #°P* determines the optimal rigid trans-
formation. Here X and Y are the probability densities
of the image intensities. Fig. 6 presents the results.

We showed that registration of medical images with
large bias-field fail when we use the initial images with-
out, any bias-correction. Thereafter we show that bias-
correction can naturally be incorporated in the regis-
tration algorithm as a feature selection step. Feature
efficiency converges thereafter nicely towards good reg-
istration and bias-correction.

4 Conclusion

Based on Markov chains, we introduced a very general
model of multi-modal signals. Using information the-
oretical foundations, we derived a feature based lower
error bound on mapping one signal into a corresponding
second signal of different modality. Starting form this
framework we show that normalized entropy is at the
basis of a much more general concept than overlap in-
variant image registration, called feature efficiency. We
discussed the implications of this framework on multi-
modal medical image processing, keeping a close focus

Figure 6: We rigidly registered the image of b) onto the
reference image shown in a). c¢) shows the bad result
without simultaneous bias-correction and d) shows good
registration with simultaneous bias-correction.

on image registration. Finally we applied the developed
theory on three potentially valuable applications, both
dealing with compensation of artifacts during the reg-
istration process. The first shows how the concept of
feature efficiency can be used to suppress noise in the
datasets to make the algorithms more reliable. The sec-
ond example is showing how the normally large bias
fields of interventional MR-scans can be corrected dur-
ing the optimization to make registration of such heavily
degraded images possible.

It’s important to note that the presented general
framework opens the door towards a wide range to fur-
ther developments about multi-modal signal processing.
Recent developments of this work in the field of multi-
media (joint audio and video signal processing) can be
found in [23]. Moreover it would be interesting to de-
rive an upper bound of the error probabilities of eq. 4
and 5 or to incorporate spatial prior information into
the proposed Markov chains.
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