
On the use and misuse of particle �ltering in digital

communications

E. Punskaya.y�A. Doucet.z W.J. Fitzgeraldy

ySignal Processing Laboratory, Department of Engineering,

University of Cambridge, Trumpington Street, CB2 1PZ, Cambridge, UK.
zDepartment of Electrical and Electronic Engineering,

The University of Melbourne, Victoria, 3010, Australia.

Email: op205@eng.cam.ac.uk - a.doucet@ee.mu.oz.au - wjf@eng.cam.ac.uk

ABSTRACT

In this paper, application of particle �ltering techniques

to di�erent classes of problems arising in digital com-

munications is considered. Several approaches are re-

viewed, and a brief simulation study for demodulation

in fading conditions and joint symbol/channel coeÆ-

cients/code delay estimation for DS spread-spectrum

systems is carried out.

1 Introduction

Particle �ltering techniques are a set of powerful and

versatile simulation-based methods to perform optimal

state estimation in nonlinear non-Gaussian state space

models. The approach has recently received a lot of

interest since it allows a large number of challenging

non-linear estimation tasks to be addressed in an eÆ-

cient on-line manner; see [5] for a survey. The idea is

to approximate the posterior distribution of interest by

swarms of weighted points in the sample space, called

particles, which evolve randomly in time in correlation

with each other, and either give birth to o�spring par-

ticles or die according to their ability to represent the

di�erent zones of interest of the state space.

Since many problems arising in digital communica-

tions can be considered as optimal �ltering problems,

the application of particle �lters seems only to be a sen-

sible choice. One must be careful, however. In most of

the cases, those problems fall into two general classes.

In the �rst one, the unknown state of the model - typ-

ically the transmitted symbol(s) - takes its values in a

�nite set; this includes, for example, demodulation in

fading channels [2, 10], OFDM systems and multiuser

detection in synchronous CDMA [11]. In the second

class, one faces more challenging problem where the un-

known state of interest consists not only of the symbol(s)

but also some continuous-valued parameters such as the

code delays as in DS spread-spectrum system analyses.

The main objective of this paper is to show that, for

a �xed computational complexity, particle �ltering tech-

niques may actually perform worse than simple deter-

ministic algorithms to solve problems in the �rst class.
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For the second class of problems, however, particle �l-

ters prove really useful as demonstrated later.

The rest of the paper is organized as follow. In Sec-

tion 2, we present a general signal model including dis-

crete parameters (transmitted symbols) and continuous

parameters (code delays). Section 3 reviews particle �l-

tering techniques in the case where only the symbols are

unknown. It outlines the weakness of these techniques

in this context. Section 4 considers the case of a mixed

continuous-discrete case and presents a generic particle

�ltering algorithm to address this problem. Finally, a

conclusion is drawn in Section 5.

2 Problem statement and estimation objectives

Transmitted waveform. Let us denote for any generic

sequence �t, �i:j , (�i; �i+1; : : : ; �j)
T
, and let dn be the

nth information symbol, and s(� ) be the correspond-

ing analog bandpass spread-spectrum signal waveform

transmitted in the symbol interval of duration Td:

strans(� ) = Re[rn(dn)PN(� ) exp(j2�fc�)];

for (n� 1)Td < � � nTd;

where rn(:) performs the mapping from the digital se-

quence to waveforms and corresponds to the modulation

technique employed, fc denotes the carrier frequency

and PN(�) is a wide-band pseudo-noise (PN) waveform

de�ned by PN(� ) =
PH

h=1
ah�(� � hTc): Here, a1:H is

a spreading code sequence1 consisting of H chips (with

values f�1g) per symbol, �(� � hTc) is a rectangular

pulse of unit height and duration Tc; and Tc is the chip

interval satisfying the relation Tc = Td=H .

Channel model. The signal is passed through a

noisy multipath fading channel which causes random

amplitude and phase variations on the signal. The chan-

nel can be represented by a time-varying tapped-delayed

line with taps spaced Ts seconds apart, where Ts is the

Nyquist sampling rate for the transmitted waveform;

Ts = Tc=2 due to the PN bandwidth being approxi-

mately 1=Tc. The equivalent discrete-time impulse re-

1The extension to a multiuser DS CDMA transmission is

straightforward, see [9, 11], for example.



sponse of the channel is given by

hc;t =
PNf�1

nf=0
f
(nf )

t Æt;nf ;

where t is a discrete time index, Nf is the number of

paths of the channel, f
(nf )

t are the complex-valued time-

varying multipath coeÆcients arranged into the vector

ft; and Æt;nf denotes the Kronecker delta.

We assume here that the channel coeÆcients ft and

code delay �t propagate according to the �rst-order au-

toregressive (AR) model:

ft = Af ft�1 +Bfvt;vt
i:i:d:
� Nc

�
0; INf

�
; (1)

�t = 
�t�1 + ���t; �t
i:i:d:
� N (0; 1) ; (2)

which corresponds to a Rayleigh uncorrelated scattering

channel model; here Af , diag(�0; : : : ; �Nf�1); Bf ,

diag(�f;0; : : : ; �f;Nf�1); with �
2

f;nf
being the noise vari-

ance, and �nf accounting for the Doppler spread (see [7]

for details and discussion on the use of the higher order

AR).

Received signal. The complex output of the chan-

nel sampled at the Nyquist rate, (in which case t =

2H (n� 1) + 1; : : : ; 2Hn samples correspond to the nth

symbol transmitted, i.e. dn $ y2H(n�1)+1:2Hn) can,

thus, be expressed as

yt = C(d1:n; �1:t) + �"t; "t
i:i:d:
� Nc (0; 1) ; (3)

where C(d1:n; �1:t) =
PNf�1

nf=0
f
(nf )

t s ((t� nf )Ts � �t)

and �
2 being the noise variance2. The noise sequences

"t; �t and v
(nf )

t ; n = 0; : : : ; Nf � 1 are assumed mutu-

ally independent and independent of the initial states

f0 � Nc

�
f̂0;Pf ;0

�
; �0 � N

�
�̂0; P�;0

�
:

Estimation objectives. The symbols dn; which

are assumed i.i.d., the channel characteristics ft and

the code delay �t are unknown for n; t > 0: Our

aim is to obtain sequentially in time an estimate of

the joint posterior probability density of these param-

eters p (d1:n; f0:2Hn; �0:2Hnj y1:2Hn) ; and, in particular,

some of its characteristics, such as E ( d1:nj y1:2Hn) ;

E ( f0:2Hnj y1:2Hn) and E ( �0:2Hnj y1:2Hn). However, this

problem does not admit any analytical solution and,

thus, approximate methods must be employed. One of

the methods that has proved to be useful in practice is

particle �ltering techniques, the use of which we inves-

tigate in this paper.

3 Particle �ltering for demodulation

First, let us develop the particle �ltering algorithm for

the channel with no delay, �t = 0; and no spreading

sequence employed, H = 1; i.e. let us design a simple

particle �ltering receiver for demodulation of the trans-

mitted signal in multipath fading conditions.

2The case of non-Gaussian noise can be easily treated using

the techniques presented in [10].

A similar demodulator has already been considered

in [2, 5, 10], although for the 
at Rayleigh channels,

where the use of Sequential Importance Sampling and

Resampling (SISR) is proposed. The problem of esti-

mating p (d1:n; f0:nj y1:n) is reduced there to one of sam-

pling from a lower-dimensional posterior p (d1:nj y1:n);

based on the fact that, conditional upon the sequence

d1:n, the density p ( f0:nj y1:n; d1:n) can be computed us-

ing the Kalman �lter, see [1, 3, 4], and, thus, p ( fnj y1:n)

be approximated by a random mixture of Gaussian dis-

tributions. According to the algorithm, N particlesn
d
(i)

1:n

oN
i=1

are simulated according to an arbitrary con-

venient importance distribution �(d1:nj y1:n) (such that

p (d1:nj y1:n) > 0 implies � (d1:nj y1:n) > 0), and the es-

timate of p (d1:nj y1:n) is obtained using the importance

sampling identity:

p̂N (d1:nj y1:n) =
PN

i=1
~w
(i)

1:nÆ(d
(i)
1:n)

(d1:n); (4)

where ~w
(i)

1:n are the so-called importance weights

~w
(i)

1:n =
w
(i)

1:nPN

j=1
w
(j)

1:n

, w
(i)

1:n /

p

�
d
(i)

1:n

��� y1:n
�

�

�
d
(i)

1:n

��� y1:n
� :

An additional condition of � (d1:nj y1:n) > 0 having to

admit � (d1:n�1j y1:n�1) > 0 as a marginal distribution

allows to propagate this estimate sequentially in time,

and a selection procedure helps to avoid the degener-

acy of the algorithm (see [3, 4, 9] for the details of the

algorithm).

The computational complexity of this approach

largely depends on the importance distribution choice

and the selection scheme being employed. The basic

idea would be to use the prior distribution as an im-

portance distribution, � (dnj y1:n; dn�1) = p (dnj dn�1) ;

thus calculating just one Kalman �lter step for each par-

ticle. This can be ineÆcient, however, as no informa-

tion carried by yn is used to explore the state space.

The employment of the \optimal" importance distribu-

tion � (dnj d1:n�1; d1:n) = p (dnj d1:n�1; y1:n) ; see [2]-[4],

which minimizes the conditional variance of w (d1:n),

may, in turn, be quite computationally extensive. In-

deed,

wn /

PM

m=1
p

�
ynj d

(i)

1:n�1; dn = �m; y1:n�1

�
;

with �m corresponding to the mth (m = 1; : : : ;M) pos-

sible realization of dn (see [9] for details), and M one-

step ahead Kalman �lters are required.

Moreover, since all the calculations have to be per-

formed anyway, it is better to base our approximation

of p (d1:nj y1:n) (hereafter we refer to this method as de-

terministic) directly on :

p̂N�M (dnj y1:n) =PN

i=1

PM

m=1
~w
(i;m)

n Æ
(

n
d
(i)
1:n�1;dn=�m

o
)
(d1:n);



w
(i;m)

n / p

�
ynj d

(i)

1:n�1; dn = �m; y1:n�1

�
; (5)

thus, considering all possible \extensions" of the existing

state sequences for each particle at step n. In this case,

one does not discard unnecessarily any information by

selecting randomly one path out of the M available as

in SISR. However, a selection procedure still has to be

employed, since each particle has M o�spring at each

step n in this approach, resulting in the exponentially

increasing number of them.

The simplest way to perform such selection is to

choose the N most likely o�spring and discard the oth-

ers (as, for example, in [12]). The weight of each of

N �M particles in this case depends on the weight of

the parent at step n � 1 as well as the likelihood term

(5) computed using the Kalman �lter. A more com-

plicated approach involves preserving the particles with

high weights and resampling the ones with low weights,

thus reducing their total number to N , as, for exam-

ple, in [6]. An important condition for the design of

the selection scheme in this speci�c context is to resam-

ple without replacement, as, indeed, there is no point in

carrying along two particles evolving in exactly the same

way, so each of them should appear at most once in the

resulting set.

Whether we choose to preserve the most likely par-

ticles or employ the selection scheme proposed in [6],

the computational load of the resulting algorithms at

each step n is that of N �M Kalman �lters, and the

selection step in both cases is implemented in O(N �

M logN �M) operations compared to O (N) when, for

example, the strati�ed sampling [8] in SISR is employed.

Of course, if M is large, which is the case in many appli-

cations (see Section 4, for example), both these methods

are too computationally extensive to be used.

To conclude, one could hope that randomization

\helps" by allowing particles with a small weight to sur-

vive, but simulations presented in Section 5 and in [11]

show that it is not necessarily the case. In this very spe-

ci�c but important context, particle �ltering algorithms

do not perform better than the simplest deterministic

method which consists of keeping at each time step the

best N hypothesis!

In the case where it is to costly to explore M hypoth-

esis for each particle, though, that is one uses an impor-

tant distribution di�erent from the optimal one, particle

�ltering could prove useful if one could develop subop-

timal importance distributions with \good" properties.

This problem has to be addressed on a case by case ba-

sis. An interesting way to explore consists of randomiz-

ing standard deterministic algorithms such as successive

interference cancellation or iterative least squares. How-

ever, advanced deterministic pruning strategies can also

be developed using, for example, a coordinate ascent

version of the algorithm proposed in [4]. The compari-

son of deterministic and randomized algorithms deserves

further study.

4 Particle �ltering for joint demodulation and

code delay estimation

Let us now consider the problem of joint estima-

tion of the symbols, channel coeÆcients and code

delay for DS spread-spectrum systems, i.e. let

us focus on the estimation of the joint poste-

rior distribution p (d1:n; df0:2Hn; d�0:2Hnj y1:2Hn) =

p (d1:n; f0:2Hn; �0:2Hnj y1:2Hn) df0:2Hnd�0:2Hn:

Again, we can restrict ourselves to approximating the

lower-dimensional distribution p (d1:n; d�0:2Hnj y1:2Hn)

through particle �ltering:

p̂ (d1:n; d�1:2Hnj y1:2Hn)

=
PN

i=1
~w
(i)
n Æ

(d
(i)
1:n;�

(i)
1:2nH )

(d1:n; d�0:2Hn) ;

and, then, if necessarily, calculating p ( f1:2Hnj y1:2Hn) as

a mixture of Gaussians computed through the Kalman

�lter associated with the Eq.(1) and (3):

p ( f1:2Hnj y1:2Hn) =
PN

i=1
p( f1:2Hnj y1:2Hn; d

(i)

1:n; �
(i)

1:2Hn);

Then, given for symbol n � 1, N particles

(d
(i)

1:(n�1)
; �

(i)

1:2H(n�1)
); i = 1; : : : ; N distributed approxi-

mately according to p
�
d1:n�1; d�1:2H(n�1)

�� y1:2H(n�1)

�
,

the basic particle �ltering receiver proceeds as follows:

Particle Filtering Algorithm

Sequential Importance Sampling Step

� For i = 1; : : : ; N , sample (ed(i)n ;e�(i)
2H(n�1)+1:2Hn) �

�(dn; �2H(n�1)+1:2Hn

�� d(i)
1:n�1; �

(i)

1:2H(n�1)
; y1:2Hn).

� For i = 1; : : : ; N , evaluate the importance weights

w
(i)
n up to a normalizing constant:

� For i = 1; : : : ; N , normalize w
(i)
n to obtain ~w

(i)
n .

Selection Step

� Multiply/discard particles with respect to high/low

~w
(i)
n to obtain N particles (d

(i)

1:n; �
(i)

1:2Hn
)

If, say, the prior is taken to be the importance distri-

bution i.e.

�(dn; �2H(n�1)+1:2Hn

�� d1:n�1; �1:2H(n�1); y1:2Hn) =

p(dn)
Q

2Hn

t=2H(n�1)+1
p(�tj �t�1),

then wn becomes

wn / p

�
y2H(n�1)+1:2Hn

�� y1:2H(n�1);
~d
(i)

1:n;
~�
(i)

1:2Hn

�
=
Q

2Hn

t=2H(n�1)+1
p (ytj d1:n; �1:t; y1:t�1) ;

and requires evaluation of 2H one-step Kalman �lter

updates.

In cases where H � 1, this method is unlikely to

perform well as the state space to explore is large.

An alternative algorithm consists of, �rst, only sam-

pling
�
dn; �2H(n�1)+1

�
and updating the distribution

with y2H(n�1)+1. Then, in the next steps, one samples

�k (k going from 2H(n � 1) + 2 to 2Hn) according to

p(�kj �k�1); and updates the distribution with yk.



5 Simulation Results

First, computer simulations were carried out in order

to compare the bit-error-rate (BER) performance of the

algorithms presented in Section 3 for demodulation of

2PSK symbols transmitted over fast Rayleigh fading

channels with normalized channel Doppler frequency

0:05 and Nf = 4. The results for di�erent average signal

to noise ratio (SNR) are presented in Fig.1 for N = 50

(pilot symbol rate is 1 : 20). They are interesting in the

sense that, in this case, the deterministic approach pre-

serving the N most likely particles (MLP) turned out to

be the most eÆcient one. With other simulation param-

eters, however, one may �nd that the results between the

di�erent algorithms are much less pronounced.

5 10 15
10

−3

10
−2

10
−1

10
0

SNR dB

BE
R

MLP 
[6] 

SISR 

Figure 1: Demodulation. Bit error rate.

In the second experiment, a basic SISR algorithm pre-

sented in Section 4 (the deterministic approach is not

applicable in this case) was applied to perform joint

symbols/channel coeÆcients/code delay estimation for

DS spread-spectrum systems with H = 15; Nf = 4

and the multipath channel response as in [7, channel

B]. The AR parameters corresponded to the case of

nearly constant coeÆcients and constant delay were set,

�nf = 0:999; 
 = 0:999; �2f;nf = 0:001; �2� = 0:001: As

it is shown in Fig.2, the algorithm exhibits good perfor-

mance even for just N = 50 particles being employed.

5 10 15
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−4

10
−3

10
−2

10
−1

SNR dB

BE
R

Figure 2: DS spread spectrum system. Bit error rate.

6 Conclusion

In this paper, we study the application of particle �lter-

ing techniques to di�erent types of problems arising in

digital communications. In the context where only sym-

bols are unknown, as in demodulation, standard parti-

cle �ltering methods, although quite capable of provid-

ing good performance, do not necessarily compare fa-

vorably with deterministic approaches: as simulations

show, the most basic deterministic algorithm preserving

the N most likely particles also turns out to be the most

eÆcient one. However, for more complex problems in-

volving continuous-valued unknown parameters, such as

DS spread-spectrum systems analyses, or, indeed, in sit-

uations where MLP and similar methods are of no use

due to their computational complexity, as with more

eÆcient M -ary modulation (M being relatively large),

additive non-Gaussian noise and multiuser detection [9],

these deterministic approaches do not apply and particle

methods appears to be really useful.
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