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ABSTRACT

We propose a new scheme for adapting support vector
classifiers (SVC) in non-stationary environments. This
adaptive SVC (ASVC) relies in interpreting the margin
and penalty factor of the SVC as a relevance measure
over the samples and on an iterative re-weighted least
square (IRWLS) approach for optimizing it, which re-
sembles the RLS filtering for adaptive equalization. The
ASVC capabilities are shown by means of computer ex-
periments.

1 Introduction

Channel equalization is a major issue in digital commu-
nications, because the channel effects the transmitted
sequence with both linear (inter-symbol interference)
and nonlinear (amplifiers and converters) distortions.
Also, the communication channel can not be consid-
ered stationary, because in some cases, such as mobile
communications or voice-band modems, the channel is
significantly modified with time. Support Vector Classi-
fiers (SVCs) are block state-of-the-art tools for knowl-
edge discovery [7], that have been successfully applied
to solve the stationary channel equalization problem
[1, 5, 8]. But the non-stationary channel equalization
problem has not been tackled with it yet.

We will address this problem first by noticing that
the SVC margin and penalty factor can be regarded as
the relevance of each input pattern and, consequently,
modifying (reducing) it for former samples as the com-
munication channel varies. We will then show that the
IRWLS procedure [5] can be used to solve an SVC with
a different and time varying margin and penalty factor
for each sample and that can be naturally modified to
include an extra sample each time a new one needs to be
equalized. There has been several attempts to formulate
an adaptive SVM (none for channel equalization), but
they either re-train a block SVM each time a thresh-
old is surpassed [4] or work with every training sample
[3], and none of then can operate in a decision directed
manner.
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In Section 2 the margin and penalty factor modifica-
tion are discussed. The ASVC is optimized in Section 3.
Section 4 is devoted to show by means of computer ex-
periments the ASVC capabilities. The paper ends with
some concluding remarks in Section 5.

2 Margin and Penalty Factor Modifications

Channel equalizers have to produce the best prediction
given the previous samples generated by the channel.
In stationary environments every sample will be equally
relevant for this task, because they have been indepen-
dently drawn from the same probability density func-
tion, but in non-stationary environments recently known
samples are more likely to resemble future samples than
formerly known ones, and we should rely most on them.
In order to deal with non-stationary environments, we
will define a confidence figure for each sample that will
be decreased as new samples are known, former samples
will lose relevance to solve the actual problem.

The SVC margin and penalty factor can account for
the relevance of each input pattern, i.e. a sample with
a large margin needs to be further apart from the clas-
sification boundary to escape being penalized, and i.e.
a sample with high penalty factor means that, if incor-
rectly classified, the learning machine will incur in a high
penalty in its objective function. These two parameters
can be regarded as confidence over each sample (the
larger they are, the most relevant the sample becomes).
The SVC with a different margin and penalty factor for
each sample (Modified-SVC) has to solve!
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where ¢(-) defines a nonlinear transformation to a
higher dimensional space (x € R — ¢(x) € RY
and d < H), and w and b define the linear equalizer
in the feature space (nonlinear in the input space, un-
less ¢p(x) = x). M; and C; are, respectively, the margin
and penalty factor applied over each sample.

The confidence figure ¢(n — i) = ¢ is a decreasing

function of n — i (M; = ]cand C; = C¢. This
formulation can be either solved using Quadratic Pro-
gramming schemes [7] or can be solved using the IRWLS
procedure [5]. The advantage of the second alternative
is that the solution for the n + 1-sample problem can be
readily derived from the n-sample problem solution as
we will show in the incoming section.

Both modifications (margin and penalty factor) are
simultaneously needed because each one of them ac-
counts for the different kind of support vectors in the
SVC solution. The margin modification varies the
weight on the solution given by the margin samples
(yi(¢” (x;)w + b) = M;) and the penalty factor mod-
ifies the weight on the solution given by the non-margin
samples (y;(¢” (x;)w + b) < M;). So, in order to effec-
tively modify the relevance of every support vector, we
need to simultaneously reduce the margin and penalty
factor of every given sample.

3 Adaptive SVC

In the previous section we have shown that the SVC
margin and penalty factor can be interpreted as a con-
fidence figure over the samples. In this section we will
use the M-SVC to construct an Adaptive SVC (ASVC),
which needs to solve a new M-SVC each time a new
sample becomes known. The M-SVC can be solved us-
ing the 3-step IRWLS procedure [5]:
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where e; = cl'y; — ¢T(xi)w —b.

3. Repeat until convergence.

being
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where the H is known as the kernel matrix, because it is
only formed by inner products of the training samples
in the feature space. Consequently, the M-SVC does
not need to know explicitly the nonlinear mapping, ¢(-),
but only its kernel (-, -), because neither the minimizing
procedure nor the use of the equalizer needs to work with
¢(+). The column vectors y, a and 3 present the obvious
expressions. The needed transformations to obtain the
IRWLS procedure from (1)-(3) are detailed in [5] for the
standard SVC, the modifications for the M-SVC readily
follows from it.

3.1 Recursive resolution

The ASVC needs to solve an M-SVC for each new sam-
ple. We will now show the n-sample problem can be
solved using the solution to the n — 1-sample problem.
In the first step of the IRWLS algorithm the solution to
the n — 1-sample problem provides the inverse of
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where the subscript denotes the last sample considered
in the matrix®. The solution to the n'” sample problem
must initially solve
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in which we can distinguish M,,_; and where
K, = [/@(xn,xl),...,H(xn,xn_l)]T (6)

The inverse of the matrix in (5) can be computed using
the inversion of a partitioned matrix lemma [6]:
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21In order to ease the development of the ASVC, we have chosen
the following notation for matrices and vectors:

e A matrix (vector) with a numeric subscript denotes that its
elements covers the range from the first element to the one
point it out by the subscript. For example, the matrix H,_1
is formed by: (Hn,—1);; Vi,j =1,...,n— 1.

e A matrix (vector) with a subset as a subscript denotes the
matrix (vector) is formed by the elements in the subset. For
example, Hy, s, is formed by: (Hsy s3)i; Vi € 51,Vj € s3.

The vectors and matrices that do not follow the above notation
will be clearly defined in the text.
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and K, = [KZ 1]7. Now we can compute the second
step of the IRWLS procedure and continue until there
is no further changes in either 3,, or b.

We have written down an algorithmic implementa-
tion of the ASVC procedure in Table 1, which is based
in solving an M-SVC with the IRWLS procedure and
including an extra sample using the inverse of a par-
titioned matrix lemma. This algorithm takes N, iter-
ations of the IRWLS procedure for each new sample.
The number of initials samples (NI) must be as low as
possible and contain at least one sample per class.

We have divided the samples in three sets to reduce
the number equations in the IRWLS procedure. The
division in sets is fully justified in [5], where the IR-
WLS procedure was developed for the standard SVC.
The sets are defined according to the following rules:

set s1: samples whose [;y; €)}(Gat"s2: samples
whose 3;y; = 0; and set s3: samples whose f;y; = Cc}'.

4 Computer experiments

Two experiments have been designed. The first one is a
simple and well-know channel to show that, even in this
case, the SVC is not able to give a good approximation
if the channel varies. The second one deals with a re-
alistic nonlinear channel model in which we show that
the ASVC is able to adapt to the variations in it and
out-performs classical adaptive equalization techniques.

4.1 Non-stationary linear channel

We have devised a simple non-stationary example where
the recived symbols are obtained from the transmitted
symbols by 7[n] = ¢[n] + a[n]t[n — 1] + z[n], being

0.5, n < 200
0.5 — 0.005(n — 200), 200 < n < 600

a[n] = { 0.5, 600 < n < 800
—0.5 + 0.005(n — 800), 800 < n < 1200
0.5, 1200 < n < 1400

and z[n] is a zero mean additive white gaussian noise
with o0, = 0.2. This problem is well-known and can
be linearly solved with a second order equalizer (x,, =
[r[n] r[n —1]]T and y, = t[n]). We have solved this
problem using the standard SVC for each new sample,
and the ASVC with ¢! = 0.99"%, the first 50 sam-
ples were used as a training sequence and the remaining
1350 samples were use in decision directed mode (the
equalizer outputs were fed back to itself). We have set
N, = 1, meaning that only a single iteration of the IR-
WLS per sample is necessary to keep track of the varia-
tions in the channel. For each sample we have computed
the Bit Error Rate (BER) for the SVC and the ASVC

1. Initialization: compute Hyy, set s1 =1,..., NI,
so =0 and s3 = 0, and a5, = C and k = 0.
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3. Compute: e and a Vi < n.

2. Compute: M = [

4. Subsets reordering:
(a)
(b)
()

)

(d) Move samples in s2 with e;y; > 0 to sj.

Move samples in s; with 3; < 0 to ss.
Move samples in s; with 8; = Ccl'y; to ss.

Move samples in s3 with e;y; < 0 to sa.

5. Set k=k+1,if k < N, go to step 2.

6. Set n = n + 1. Obtain the n** sample (x,,,y»).
Compute K,, as in (6). Solve the linear equation
system in (5). Set k= 0 and go to step 2.

Table 1: IRWLS-ASVC procedure.

and have plotted in Figure 1 the mean result for 20 in-
dependent trials, together with the Bayes error.

Figure 1: The BER is plotted for the ASVC (solid), the
SVC (dash-dotted) and the Bayes equalizer (dashed).

We must point out that while the channel is invariant
(the first 200 samples) the ASVC and the SVC give the
same result but once the channel varies the SVC is not
able to track its variations and ends fixing the equal-
izer to the mean value of the given data. In this case,
the SVC solution is fixed around a[n] = 0, explaining
why the SVC gives the best solution for n = 1000. The
ASVC is able to track the channel changes as can be in-
ferred from its error curve (parallel to Bayes error), and
it uses an almost constant number of support vectors
(SVs) (between 3 and 7). The SVC has an increasing
number of SVs and ends with more than 30.



4.2 Non-stationary nonlinear channel

In order to test the ASVC in a more realistic environ-
ment we have taken a channel model from [2] in which
a real radio channel was characterized by

2
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a1[n] and b[n] were, respectively set to 0.87 and 0.2, as
proposed in [2], and have varied ag[n] = az[n] = a[n]:

0.3, n < 400
0.3+ 0.01(n — 400), 400 < n < 450
0.35, 450 < n < 650
a[n] = < 0.35 — 0.01(n — 650), 650 <mn < 750
0.25, 750 < 1 < 950
0.25 4+ 0.01(n — 950), 950 < n < 1000
(0.3, 1000 < 1 < 1200

We have solved this task using a linear and a RBF?
ASVC equalizers and have also solved it using the well-
known RLS and LMS techniques. We use a 3"¢ order
equalizer (x, = [r[n] r[n —1] r[n —2]]" and y, =
t[n — 1]). The confidence figure was ¢ = 0.995" %,
the width of the RBF kernel was set to 1 and N, =1
for both linear and nonlinear ASVC. The RLS and LMS
adapting parameters were, respectively, set to 0.997 and
0.01. The value of . = 0.15 and we used the first
100 samples as training sequence and from then on the
equalizer operate in decision directed mode. We have
plotted the BER for 20 independent trials in Figure 2.
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Figure 2: The Bit Error Rate for the proposed equalizing
schemes are depicted

For this channel the linear ASVC, which presents the
same complexity as the RLS, is able to out-perform both
the RLS and LMS schemes. The squared error is not a

3 oy — i =7
The RBF kernel x(x;,x;) = exp = .
o

good error measurement for nonlinear channels, mean-
while the maximum margin SVC property is able to per-
formed well in every situation, explaining the gap in the
BER between the linear ASVC equalizer and the LMS
or RLS schemes. The ASVC with a nonlinear kernel is
more versatile than the ASVC linear equalizer and it is
able to further reduce its BER.

5 Conclusions

In this paper we have shown that the margin and penalty
factor of the SVC can be interpreted as confidence over
the training samples and we have shown that reduc-
ing it with time leads to a SVC that adapts to channel
variations. Moreover, we have solved the ASVC using
an IRWLS schemes that resembles the well-known RLS
algorithm for adaptive signal processing, although it is
able to attain maximum margin solution and higher gen-
eralization as a consequence.
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