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ABSTRACT

We investigate the structure of a maximum likelihood
timing estimator for the uplink of a filter bank (FB)
based multiuser transmission system used over time dis-
persive channels. We compute the associated true and
modified Cramér-Rao bound and show how it is related
to the waveform allocation to the different users.

1 Introduction

Filter bank based multiple access (FB-MA) is an ele-
gant way to describe the classical access methods, like
F- (frequency), T- (time) and C- (code) division mul-
tiple access [1], but makes it also possible to address
other waveforms such as DMT basis functions for exam-
ple. We consider this formalism to represent the uplink
transmission of a multiuser system where the channels
are static and time-dispersive, like in powerline-based
access networks for instance. The problem under con-
sideration is that of closed-loop network timing synchro-
nization at the level of the line termination (equivalent
of the base station in mobile). Timing recovery is a crit-
ical operation in all digital communications systems [2].
In the uplink scenario, there are as many timing offsets
to compensate as there are users active on the line. The
timing error information has to be sent back to the user
modems via the downlink.

In the present paper we design a generic data-aided
(DA) timing estimator for the maximum likelihood
(ML) criterion and compute the associated Cramér-Rao
bound (CRB). We basically show how this bound is an
extension of the single user bound [3], [4] and how it is
influenced by the waveform allocation that is performed
to the transmitters.

2 The FB multiple access scheme

2.1 FB modulation

We consider baseband uplink transmission of signals
from Ku remote user modems towards the line termi-
nation. We suppose that a set of Kr orthogonal signa-
ture codes sr(m) are available to ensure multiple access.

Mutually exclusive subsets Ck ⊆ {1, · · · ,Kr} of Kk sig-

natures are allocated to user k with
∑Ku

k=1
Kk = Kr.

The signal xu
k(t) transmitted by user k is given by:

xu
k(t) =

∑

r∈Ck

xr(t) =
∑

r∈Ck

∞
∑

m=−∞

Ir(m)gr(t − mT ) (1)

where xr(t) is the signal that corresponds to a given
signature waveform gr(t) modulated by a given stream
of real symbols Ir(m) produced at a baud rate 1/T .
The signature waveforms are obtained by associating
the signature codes with a continuous-time shaping filter
f(t):

gr(t) =

N
∑

n=1

sr(n) f(t − nTr) (2)

where Tr = T/Kr is the chip duration. The filter f(t)
is supposed to be of the half root Nyquist type with
bandwidth (1 + α)/Tr. The information symbols Ir(m)
are modelled as independent random variables with a
uniform discrete distribution function corresponding to
some PAM constellation, and a normalized variance σ2

I .
The size of the PAM constellations may be different on
the various symbol streams, depending on the signal to
noise ratio available at the receiver output.

2.2 Multiuser channel

At the output of the multiple access channel, we recover
the sum of the delayed transmitted signals, filtered by
the user-specific channels ck(t), and corrupted by addi-
tive noise n(t) with two-sided PSD N0/2:

r(t) =

Ku−1
∑

k=0

[xu
k(t − τ c

k) ⊗ ck(t)] + n(t) (3)

=

+∞
∑

m=−∞

Ku−1
∑

k=0

∑

r∈Ck

Ir(m)hrk(t − mT − τ c
k) + n(t)

with hrk(t) = gr(t) ⊗ ck(t) and ⊗ denotes convolution.
The delays τ c

k are supposed to be close to their nominal
values which correspond to the desired user alignments.
The delays are gathered in the Ku × 1 vector τ c. In
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the nominal mode of operations, obtained at modem
startup, the delay vector is supposed to be τ 0. The
channel timing error is denoted by εc = τ c − τ0.

2.3 Receiver front end and multiuser channel
matrix

The received signal is filtered by means of an ideal low-
pass filter with cutoff M/2T and sampled at the frac-
tional rate 1/Ts = M/T where M ≥ Kr(1 + α) is
an integer chosen large enough in order to cover the
whole bandwidth of the signal spectrum. We define M
polyphase components rρ,ε

c
(m) with ρ ∈ [0,M − 1] as

follows:

rρ,ε
c
(m) = rf (mT + ρTs)

=

+∞
∑

m=−∞

Ku−1
∑

k=0

∑

r∈Ck

hρr,εc

k
(m − n)Ir(m) + nρ(m)

with rf (t) = r(t) ⊗ f(t). The hρr,εc

k
(m) polyphase com-

ponent represents the cumulative effect of the signature
waveform gr(t), the channel ck(t) and the receive filter,
sampled at the symbol rate T with a phase (ρTs − τ c

k).
The last term nρ(m) is the filtered noise sampled at the
symbol rate with a phase ρTs, that is to say a white
gaussian noise sequence with variance σ2

n = N0M/2T .

If these equivalent channel polyphase components are
limited to a length Lh + 1 = Lh1 + Lh2 + 1, we may
gather the channel parameters into a (Lh + 1)M × Kr

matrix as follows:

H
ε

c

=





















h
1,εc

1

(−Lh1) · · · h
Ku,εc

Ku

(−Lh1)

...
...

h
1,εc

1

(0) · · · h
Ku,εc

Ku

(0)

...
...

h
1,εc

1

(Lh2) · · · h
Ku,εc

Ku

(Lh2)





















=
[

H
1,εc

1

· · · H
Ku,εc

Ku

]

(4)

where each submatrix h
k,εc

k

(m) has element (ρ, r) given

by hρr,εc

k
(m) with r ∈ Ck and ρ ∈ [1, · · · ,M ]. The matri-

ces of channel first and second derivatives Ḣ
ε

c

and Ḧ
ε

c

,

as well as the corresponding submatrices, are defined in
the same fashion except that the polyphase components
of hrk(t) are replaced by the polyphase components of
dhrk(t)/dt and d2hrk(t)/dt2, respectively.

For the sake of concision we define the shortened nota-
tion: x(m)A

B ,
[

x(m − A) · · · x(m + B)
]T

. Look-
ing at a sequence of Lr received segments and taking
into account the continuous characteristic of the trans-
mission, we get the following channel equation:

rε
c

(m)Lr−1

0 =

Ku
∑

k=1

[

HLr

k,εc

k

]

Ik(m)Lr+Lh2−1

Lh1
+ n(m)Lr−1

0

(5)

where rε
c

(m) and n(m) are vectors of M polyphase

components, Ik(m) is the vector of Kk PAM symbols

transmitted by user k at time m, and
[

HLr

k,εc

k

]

is a

MLr × Kk(Lr + Lh) matrix structured as follows:









h
k,εc

k

(Lh2) · · · h
k,εc

k

(−Lh1) 0

. . .
. . .

0 h
k,εc

k

(Lh2) · · · h
k,εc

k

(−Lh1)









(6)

This matrix is obtained by stacking Lr cyclic shifts of
the first row of M × Kk blocks.

2.4 Symbol energy and mean square bandwidth

The energy of the received symbols is given by:

Erk = σ2
I

∫ +∞

−∞

|hrk(t)|2 dt =
σ2

I

2π

∫ +∞

−∞

|Hrk(ω)|2 dω

(7)
This energy depends both on the spectral characteristics
of the signature and on the effect of the considered chan-
nel on that signature. The total symbol energy received
from user k is

Ek =
∑

r∈Ck

Erk = σ2
I

T

M
tr

(

HT

k,εc

k

H
k,εc

k

)

(8)

We define the mean square bandwidth of the signal re-
ceived from user k as follows:

W 2
k =

σ2
I

2π

∫ +∞

−∞

∑

r∈Ck

ω2|Hrk(ω)|2 dω

σ2
I

2π

∫ +∞

−∞

∑

r∈Ck

|Hrk(ω)|2 dω

= −
tr

(

Ḧ
T

k,εc

k

H
k,εc

k

)

tr
(

HT

k,εc

k

H
k,εc

k

) =
tr

(

Ḣ
T

k,εc

k

Ḣ
k,εc

k

)

tr
(

HT

k,εc

k

H
k,εc

k

) (9)

The above quantities Ek and W 2
k do not depend on the

timing delays εc
k even if they appear in the definitions.

3 ML-DA timing estimation

3.1 Derivation of the ML-DA estimator

The log-likelihood function of the received signal is:

Λl (r | I, ε) = κ −
T

N0M

∣

∣

∣

∣

∣

rε
c

−
Ku
∑

k=1

[

HLr

k,εk

]

Ik

∣

∣

∣

∣

∣

2

(10)

where κ is a constant. The ML-DA estimate of the
delays is the vector ε̂ that maximizes this expression.
In other words, the first derivative of the log-likelihood
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function with respect to each timing parameter:

∂Λl [r | I, ε]

∂εk

=
2T

N0M

[

ITk

[

Ḣ
Lr

k,εk

]T

(

rε
c

−
Ku
∑

k′=1

[

HLr

k′,ε
k′

]

Ik′

)]

(11)

is zero for εk = ε̂k and k ∈ [1,Ku]. This estimator is
obviously unbiased as E {∂Λl/∂ε} = 0 for ε = εc. The
timing estimation error is defined as ∆ε = ε̂ − εc.

3.2 True Cramér-Rao lower bound (CRB)

The Fisher information matrix associated with this log-
likelihood function is the Ku × Ku symmetric and pos-
itive definite matrix whose elements are defined by

Jkk′(εc, I) = −En

{

∂2Λl [r | I, ε]

∂εk∂εk′

}

ε=ε
c

(12)

=
2T

N0M

(

ITk Φ
kk′

ITk′

)

where Φ
kk′

,

[

Ḣ
Lr

k,εc

k

]T
[

Ḣ
Lr

k′,εc

k′

]

and the expectation

is taken with respect to the additive noise. From the
Cramér-Rao theorem, we know that

En

{

∆ε∆
T
ε

}

− J(εc, I)
−1 ≥ 0 (13)

where ≥ 0 is interpreted as meaning that the matrix
is positive semidefinite. The lower bound on the tim-
ing error variance is dependent on the specific sequence
of information symbols involved in the received signal
segment [5]. In a tracking mode of operation, the tim-
ing parameters are continuously estimated and the lower
bound on the average timing error variance becomes:

var(ε̂k) ≥ EI

{

[

J(εc, I)
−1

]

kk

}

(14)

3.3 Modified Cramér-Rao lower bound

The right-hand side of (14) is not easy to compute. Some
simplifications are made possible by using the law of
large numbers, if the length Lr of the observation in-
terval (and the length of the corresponding sequences
of symbols) is long. In that case, the diagonal elements
of the Fisher information matrix are tightly distributed
around a large mean, while the non-diagonal elements
are tightly distributed around a zero mean:

Jkk ∼ N
[

(

Lrσ
2
I

)

mkk,
(

√

Lrσ
2
I

)

skk

]

Jkk′ ∼ N
[

0,
(

√

Lrσ
2
I

)

skk′

]

(15)

with

mkk =
1

Lr

tr
(

Φ
kk

)

s2
kk =

1

Lr





∑

i

ρ2
i

(

Φ
kk

)2

ii
+

∑

i

∑

j>i

(

2Φ
kk

)2

ij





s2
kk′ =

1

Lr





∑

i

∑

j

(

Φ
kk′

)2

ij



 (16)

where ρ2
i = E

{

I4
}

/σ4
I − 1 < 4/5 depends on the PAM

constellation used on the ith symbol stream. The quan-
tities defined in (16) are independent of the observation
window size Lr (at least by neglecting the side-effect due
to continuous transmission).

To get a tractable expression of the CRB, we have to
observe two inequalities:

• The symmetric positive definite Fisher information
matrix, has the property that:

[

J−1
]

kk
≥

1

Jkk

∀ I (17)

Inequality (17) becomes an equality if and only if
the Fisher information matrix is diagonal. In other
words, considering it as an equality is equivalent to
neglecting the performance degradation due to the
joint estimation process. For a long observation
window, the next approximation for the matrix in-
version is valid:

[

J−1
]

kk
≈

1

Jkk



1 +
∑

k′ 6=k

J2
kk′

Jkk Jk′k′



 (18)

and the average inverse of the Fisher information
matrix becomes:

EI

{

[

J−1
]

kk

}

≈ EI

{

1

Jkk

}



1 +
1

Lr

∑

k′ 6=k

s2
kk′

mkkmk′k′





(19)
The last factor appears as a correction term which
decreases linearly with the size of the observation
window.

• The application of Jensen’s inequality to the convex
function f(x) = 1/x gives:

EI

{

1

Jkk

}

≥
1

EI {Jkk}
(20)

As Jkk is concentrated near its mean, a second or-
der Taylor expansion of its inverse can be used to
provide the following approximation:

EI

{

1

Jkk

}

≈
1

EI {Jkk}

(

1 +
1

Lr

s2
kk

m2
kk

)

(21)
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The last factor appears again as a correction term
which decreases linearly with the size of the obser-
vation window.

In the light of relations (17) and (20), we obtain a mod-
ified (looser) lower bound on the timing error variance:

var(ε̂k) >
[

EI

{

J (εc, I)
}]−1

kk
=

1

EI {Jkk}
(22)

From a careful examination of the
[

Ḣ
Lr

k,εc

k

]

matrix struc-

ture shown in (6), we can check that

mkk =
1

Lr

tr
(

Φ
kk

)

= tr
(

Ḣ
T

k,εc

k

Ḣ
k,εc

k

)

(23)

Finally, the proposed modified bound is:

var(ε̂k) >

[

2Ek

N0

]−1
1

Lr W 2
k

. (24)

Notice that this modified bound is independent on the
true value to be estimated εc. The proposed bound cor-
responds to the modified Cramér-Rao bound (MCRB)
introduced for vector parameter estimation by [6]. The
MCRB for a given user is the same as in the single user
scenario, that is to say it only depends on the aver-
age matched filter bound (MFB) 2Ek/N0 and the mean
square bandwidth (MSB) W 2

k of the considered user.
However, both quantities are dependent on the individ-
ual channels and the waveforms allocated to the differ-
ent users. In a FB system, the waveform allocation has
thus a strong impact on the multiuser timing estimator
performance: it should be matched to the different chan-
nels in such a way that the average MFB-MSB product
is maximized for each user. This is a matter for opti-
mization.

3.4 Timing estimation vs. timing sensitivity

The timing estimator performance has an large impact
on the symbol detection process. As a matter of fact, the
variance of the timing estimator (which decreases with
the MSB) has to be put in perspective with the sen-
sitivity of the symbol detector to timing errors (which
increases with the MSB)[7].

Let us consider a simple AWGN scenario with a
matched filter bank receiver. The symbol energy on the
waveforms allocated to user k is Ek0 = Ek/Kk. The
variance of the symbol error er = Îr − Ir at the output

of the rth receiver output is given by:

σ2
er

(ε) = σ2
I

[

(

2Ek0

N0

)−1

+
1

2
εT Ẍ

r
ε

]

(25)

where Ẍ
r

is the multiuser timing sensitivity for wave-
form r, which depends on the waveform allocation. It

can be shown as an extension of [7], that (i) for a pa-
raunitary FB and (ii) when the excess bandwidth α is
zero, we have:

1

2

Ku
∑

k′=1

(

Ek0

Ek′0

)

[

Ẍ
r

]

k′k′

= W 2
r (26)

Using (24), (25) and (26), it can be shown that for a
balanced waveform allocation (same KkW 2

k product for
each user), the average symbol error variance for user k
is lower bounded as follows:

1

Kk

∑

r∈Ck

Eε

{

σ2
er

(ε)
}

> σ2
I

(

2Ek0

N0

)−1 [

1 +
1

LrKr

(

Kr

Kk

)]

(27)
LrKr gives the length of the timing observation window
(in terms of chip durations) and Kr/Kk > 1 gives the
penalty due to the multiuser estimation process.

4 Conclusion

A fundamental lower bound on the multiuser DA tim-
ing estimation variance was computed in a filter-bank
based uplink transmission system. With long symbol
sequences, it was shown to be a direct extension of the
single user lower bound.
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