Optimal Caching Mechanism for JPEG 2000
Communications

Marcela Iregui, Philippe Chevalier and Benoit Macq *

ABSTRACT

In this paper we study an optimal transmission mecha-
nism along with a memory caching strategy in a server-
client architecture for large JPEG2000 (J2K) images
browsing. The system takes advantage on the scalability
introduced by J2K codestreams. The idea is that users
accessing the server could navigate in a seamless way in
one or several images. They could change the display-
ing requirements, ask for a desired resolution, quality
or region of interest (ROI) with no need to receive the
whole codestream. We propose a smart data stream-
ing strategy to minimize the latency time and support
interactive browsing. Our strategy takes into account
several constraints as delays, memory, bandwidth, etc.,
for permitting fast adaptation to image browsing with
optimal employment of resources.

1 Introduction

Consider a server-client architecture where the server
holds a JPEG2000 image database. The client can ac-
cess and browse images in a seamless way taking advan-
tage of the J2K codestream scalability [1], [4]. At the
beginning, one image or a ROI is displayed in low qual-
ity or low resolution according to the user preferences.
If a request from the client is received (i.e. next quality,
resolution or region), the server parses the codestream,
seeks the relevant packets and sends them. However, as
explained in [3], limitations on the available bandwidth
reduce the transmission rate and only a portion of the
image can be displayed at a particular time. Moreover,
in dynamic browsing interfaces, the displayed image re-
gions shall change whenever the user changes the re-
quest. In consequence, the response time must be mini-
mized and the most important packets sent at each time.
The selection of the relevant J2K packets must take into
account the complex characteristics of the JPEG2000
codestream, i.e. J2K packets have different associated
utilities and dependencies.

M. Iregui and B. Macq are with the Communications and
Remote sensing laboratory and P. Chevalier with the POMS unit,
all at the Université Catholique de Louvain, Belgium. E-mail:
iregui@tele.ucl.ac.be. This work was funded by the IST project
PRIAM (IST-28646).

If the available resources are underused, the server
could predict the user behavior in the session and de-
cide accordingly to send additional data as proposed
by [3]. However, in this article we don’t address this
case and we will consider only constrained cases. If the
server deals with several clients with different constrains
in delays and bandwidth, a data streaming strategy is
necessary to optimize the data flow and a caching mech-
anism to hold data at server and client sides. A simi-
lar approach is presented in [2] for video streaming. In
this work we make allowance for rate constraints and
we propose an optimal data stream mechanism based
on the optimization of an utility function for J2K pack-
ets streaming.

2 System Model

The system consists of a server, which encodes and
archives images, and a client, which requests some image
data, decodes it and manages the displaying as shown
in Figure 1. At the server side, images are compressed
using the J2K algorithm. The parser is an intelligent
entity in the server, which decides what portion of the
codestream must be sent to meet the user requirements.
At the client side the received data are decoded and the
results held within a cache memory, ready to be used by
the viewer. In order to allow a progressive transfer of
coded data, the system will use an interactive protocol
adapted to JPEG 2000.

ENCODER

Channel

PARSER DECODER [——* VIEWER

IMAGE
DATABASE

e T

User Reguest T

Client

Figure 1: System block diagram.

2.1 Encoder

Images are encoded using the JPEG 2000 encoding al-
gorithm [1], [4]. One of the most powerful features

of JPEG 2000 is the scalability of the generated code-
stream i.e. it can be arranged by quality (SNR), reso-
lution, component and/or position. By SNR, The qual-
ity layers in the codestream are decoded progressively
giving at each time a displayed image improved in qual-
ity. By resolution, the image can be accessed by levels,
i.e. starting from a thumbnail, at each level the dis-
played image is bigger. Scalability by position is possi-
ble because the codestream is composed of packets that
contain the coded data for a given precinct (group of
codeblocks) which can be mapped onto a specific image
region. Five possible progression orders are allowed:

1. Layer-Resolution-Component-Position,
2. Resolution-Layer-Component-Position,
3. Resolution-Position-Component-Layer,
4. Position-Component-Resolution-Layer,
5. Component-Position-Resolution-Layer.

Another important feature of J2K is that it is possible
to predefine a ROI encoded with better quality than the
background, and placed at the beginning of the code-
stream.

2.2 Parser

The parser is the intelligent entity of the server. It looks
for the relevant parts of the codestream according to the
user requests and the channel bandwidth. It maintains a
model of the decoder state in order to determine the next
data to send. The Parser fills a buffer with a maximum
quantity of data that maximizes the user satisfaction.
The buffer size depends on the memory, bandwidth and
delay constraints imposed by the network or the client.

2.3 Decoder

The decoder is a J2K ”scalable” decoder, able to de-
code progressively portions of the codestream. In order
to actualize at each time the decoded data, a copy of
the received packets is maintained in the decoder cache
memory. At the output the decoder will put the image
information in an image cache memory ready to be used
by the viewer.

3 Data streaming strategy

As said above, the parser must be able to seek the rele-
vant parts of the J2K codestream according to the user
requests. The idea is to maximize the user satisfaction
and efficiently manage resources: cache memory and/or
bandwidth. By user satisfaction we mean displaying
the required image region at the maximum quality and
resolution in a minimum delay. To minimize the de-
lay, the available bandwidth must be optimally used in
order to maximize the rate in each transmission inter-
val. The problem of budget-constrained allocation in a
bandwidth limited transmission can be formulated as:

if G; is the state of the client cache at time i, we want
to find the optimal set of J2K packets S; to be sent at
interval i, such that the total rate is such that:

RiZZTkSBi (1)

kES;

and will produce the largest utility U(G; U S;).

In equation (1) 7y is the rate of the packet k¥ and B;
is the available bandwidth (or cache memory). R; is
the effective bandwidth which is the sum of rates of the
J2K packets that maximize the resources and the utility
function for the interval i. The state of the client cache
G; is updated by: G;41 = G; U S;

This problem is an extension of the 0-1 knapsack prob-
lem, where the utility metric will determine the value
of each packet and the bandwidth (memory) constraint
corresponds to the capacity of the sack. The 0-1 knap-
sack problem can be easily solved using greedy algo-
rithms or dynamic programming [6].

3.1 Utility function

The definition of the utility metric, U, is based upon the
user preferences. This function depends on the packet
dependencies and the way the user navigates in the im-
age. Thus:

1. We suppose that at the beginning of the session
the user selects a preferred progression order. De-
pending on the selection, a weight is given to each
variable of the display. For example, if the user se-
lects a Layer-Resolution-Component-Position pro-
gression order, it means that he or she wants an
overview of a overall region, giving priority to po-
sition over components, resolutions and layers in
that order. In this case, the user considers that the
important thing is to have an overview as soon as
possible of the selected region or the whole image.

2. The packet value is given by a measure of the impor-
tance of its corresponding layer, resolution, compo-
nent and position. In the case of layers, lower layers
have priority over higher ones,the same for resolu-
tions and components. For example, packets from
higher layers have 0 value if the corresponding lower
layers have not been sent or previously selected as
candidates.

3. For the position, the criterion we use is related with
the relevance of the given precinct regarding the re-
gion of the image selected by the user, and addition-
ally by its location between the selected area. We
give more weight to such precincts located in the
center of the region because normally, users tend to
focus at the center of a zoomed region rather than
at the borders.

If we define s C S; as the set of packets that has
been already selected to be sent and k; . ., as the packet
corresponding to layer [, resolution r, component ¢ and
precinct p, the utility function of a packet k is given by:

Ui(kt,r,c,p) = Wi i%i,rUi,cUi,p (2)

In (2), wiy, iy, ui and u;, represent the utility of
the layer, resolution, component and precinct respec-
tively. Thus, if 2 > 0 is a measure of the distance from
the center of the ROI, a; € {1,2, 3,4} the weight given
to each dimension by the user and I,r,c the weight of
each layer, resolution or component; we define utility
variables as:

0 if kj_1 .. G: U , l 0,
Uz’,l = L 4 la.a P g(2 S) > (3)
a1l otherwise
ip = {0 if kl,r—%,c,p g (G;Us), r>0)
asr otherwise
'U/j’c — {0 lf kl,r,cil,p ¢ (G@ U S), c > 0 (5)
azc otherwise
0 if p ¢ ROI()
ip = 6
tor {‘;—4 otherwise (6)

The parser keeps track of the client access history to
determine which data must be sent. The server receives
feedback from the client when data has been received or
discarded due to memory constraints. This mechanism
allows adaptation to the navigation and server adapta-
tion to the client status.

If no track of the client status is held, the client must
always drive the navigation, so each time, a request
must be sent indicating specifically the needed packets.
For some applications this mechanism is not optimal
because it supposes the client downloads a codestream
index for each image he is dealing with, even if he’s just
looking at low resolutions when seeking a given image
in a database.

4 Client memory caching mechanism

Clients accessing the server can have an heterogeneous
set of rates and distinct hardware configurations, de-
coder capabilities and memory capacities. Thus, for
constrained applications a memory caching strategy is
necessary to manage data. Due to the dependencies be-
tween packets, when cache storage is full, the decoder
must determine which packets can be discarded to make
room and which are mandatory to decode the next in-
coming data. This decision depends on the user navi-
gation in the image. Several caching techniques, taking
into account the importance of each packet, have been
proposed. A soft caching scheme has been proposed by
[5], which takes advantage of the a priori information

of each image and resolution. However, this globally
optimized cache allocation strategy is not necessarily
optimal for particular local access operation.

For some applications, the cache management must be
done dynamically and we need to adapt the resources
of the client during the navigation process. This will
permit an adaptation to the navigation and an optimal
sharing of resources between several images (i.e. a med-
ical exam). So, the caching mechanism used for our
system is based on the soft caching for dynamic access
proposed by [3].

5 Simulation results

In this section we illustrate the results showing a simple
example in a LRCP navigation scenario of a 1792x2816
image. The image is J2K compressed with two quality
layers, 3 resolution levels and 77 precincts/resolution.
Supposing that at time ¢ the client has received the
whole layer 0, so he has an overview of the image. Know-
ing that he has limited resources, he chooses a region to
zoom in as shown in figure 2(a) and sends a request
to the server. The server has two possibilities, either
it sends the corresponding packets following the raster
order of the precincts as they are in the codestream or
sends the packets which efficiently utilize the channel
bandwidth given by the utility function presented in
section 3. We show in figures 2(b) and 2(c) the same
image region displayed at the ;1 instant without and
with optimization respectively. In image 2(b) we can
see that the top has been updated but the center which
is normally the target region is still fuzzy. Hence, from
these two pictures we can infer that normally the user
will be more satisfied by the second one. If he is just
interested in identifying the subjects in the picture, in
the first case he must wait more to get the packets he is
interested in.

6 Complexity issues

It is well known that dynamic programming is time de-
manding when data sizes are very large [6]. For the 0-1
Knapsack problem, the classical solution is O(nb), where
n is the number of packets and b the available band-
width. If b is extremely large, the algorithm can take a
lot of time and even with no consideration of the packet
dependencies which introduce an additional delay, this
algorithm may easily become un-feasible. However, in
cases where b is large, it is not necessary an optimiza-
tion algorithm because the user can get data very fast.
Hence, it should be selectively applied in cases for which
the bandwidth is very limited, for it is here that utility
is maximal. So, because our algorithm is optimal when
focusing the center of a region, what we propose is to use
it only in constrained cases where the bandwidth is two
times smaller than the codestream size for a given image

(b) tit1

Figure 2: Boat2([4]) image displayed at ¢; and #;4;

(¢) ti+1, optimal

or region. If even in that conditions the computational
time is critical, there exist greedy solutions, which are
less time demanding but give sub-optimal solutions to
the problem.

7 Conclusions

In this paper we have presented a strategy to manage
the data streaming in a server-client architecture to al-
low seamless navigation in J2Klarge images by efficiently
managing resources. The presented data flow mech-
anism allows the minimization of the server response
time according to the user preferences. This method
is adaptable to different clients with different resources.
In this way the constrained applications will receive the
maximum quantity of data according to their capacities.
This technique should be combined with a cache mem-
ory management at the client side to allow the optimal
employment of resources. We propose a dynamic mech-
anism to control the memory caching at the client side.
This data flow mechanism can be complemented with a
technique to predict the user behavior in the navigation
in order to prefetch packets to the client.

References

[1] Martin Boliek, Christipoulos Charilaos, and Eric
Majani. JPEG200: Part I Final Draft International
Standard. ISO/IEC 15444-1, March 2001.

[2] Jia-Ru Li, Xia Gao, Qian Leiming, and Vaduvur
Bharghavan. Goodput control for heterogeneus data
stream. In Proc. of the 10th Inal. workshop on Net-
work and Operating System Support for Digital Au-
dio and Video, NOSSDAV, June 2000.

[3] Chengjiang Lin and Yuan F. Zheng. Fast browsing of
large scale images using server prefetching and client
caching techniques. In Applications of Digital Image
Processing XXII, SPIE, pages 376-387, July 1999.

[4] David Taubman and Michael Marcellin. JPEG200
Image Compression Fundamentals, Standards and
Practice. Kluwer Academics Publishers, November
2001.

[5] C. Weidmann, M. Vetterli, A. Ortega, and F. Carig-
nano. Soft caching: Image caching in a rate-
distortion framework. In IEEFE conference on Image
Processing (ICIP 97), 1997.

[6] Laurence Wolsey. Integer programming. Wiley In-
terscience, 1998.

