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ABSTRACT

‘We present a new continuous automatic speech recognition
system where no a priori assumptions on the dependencies
between the observed and the hidden speech processes are
made. Rather, dependencies are learned form data using the
Bayesian networks formalism. This approach guaranties to
improve modelling fidelity as compared to HMMs. Further-
more, our approach is technically very attractive because all
the computational effort is made in the training phase.

1 INTRODUCTION

First order Hidden Markov Models (HMM) are the most
commonly used stochastic models in speech recognition.
They are defined with a set of imposed conditional indepen-
dence assumptions. Indeed, the observations are assumed to
be governed by a hidden (unobserved) dynamic process. The
associated independence assumptions state that the hidden
process is first-order Markov, and each observation depends
only on the current hidden variable. There is, however, a
fundamental question regarding these dependency assump-
tions: are they realistic hypothesis for any kind of speech
recognition task?

In [1], we proposed a methodology in which we do not
make any a priori dependency assumptions. Rather, we give
data a complete (but controlled) freedom to dictate the ap-
propriate dependencies. In other words, we learn the de-
pendencies between (hidden and observable) variables from
data. The principle of this methodology is to search over all
the possible ”realistic” dependencies, and to chose the ones
which best explain the data. This approach has the advan-
tage to guaranty that the resulting model represents speech
with higher fidelity than HMMSs. Moreover, a control is given
to the user to make a trade-off between modeling accuracy
and model complexity. In addition, the approach is techni-
cally very attractive because all the computational effort is
made in the training phase.

Our approach is based on the framework of dynamic
Bayesian networks (DBNs). DBN theory is a generalization
of Bayesian networks (BNs) to dynamic processes. Briefly,
the Bayesian networks formalism consists in associating a
directed acyclic graph to the joint probability distribution
(JPD) P(X) of a set of random variables X = {Xj,..., X }.
The nodes of this graph represent the random variables,
while the arrows encode the conditional independencies (CI)
which (are supposed to) exist in the JPD. The set of all CI
relations, which are implied by the separation properties of
the graph, are termed the Markov properties. A BN is com-
pletely defined by a graph structure S and the numerical
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parameterization © of the conditional probabilities of the
variables given their parents. Indeed, the JPD can be ex-
pressed in a factored way as P(X) = []}_, P(X;|II;), where
II; denotes the parents of X; in S.

The use of DBNs in speech recognition has gained a lot of
interest in the last few years [2, 3, 4]. In this paper, we use
the flexibility of this framework and instead of fixing a prior:
the structure of the acoustic models (as is done with HMMs),
we build an ”intelligent” system which works as follows. We
feed the system using the observed data. Then, the system
determines the structure S (i.e., the dependencies) and the
parameters © which best represent the data. This strategy
is known as structural learning in the BNs literature. In [1],
we utilized this learning methodology for an isolated speech
recognition task. In this paper, we present the application
of this approach to continuous speech recognition. While in-
ference is relatively easy in the isolated setting, it requires
more attention in the continuous setting. We provide in par-
ticular a decoding algorithm which handles different model
structures for different words in the vocabulary.

In the next section, we shortly introduce the dynamic
Bayesian networks terminology. In section 3, we define the
class of DBNs we use in our setting. Next, we briefly sum-
marize the structural learning algorithm. In section 6, we
describe the decoding algorithm for continuous speech recog-
nition using DBNs. Finally, we illustrate the performance of
our approach on a connected digits recognition task.

2 DYNAMIC BAYESIAN NETWORKS

A DBN encodes the joint probability distribution of a time
evolving set X[t] = {Xi[t],..., Xn[t]} of variables. If we
consider T time slices of variables, the DBN can be con-
sidered as a (static) BN with T' x n variables. Using the
factorization property of BNs, the joint probability density
of X{ = {X[1],..., X[T]} is written as :

P(x[,..., X)) = [] [] P(x:Hi) (1)

where II;; denotes the parents of X;[t]. In the BNs litera-
ture, DBNs are defined using the assumption that X|[t] is a
Markov process [5]. In this paper, we relax this assumption
to allow non-Markov processes and consider that the process
X [t] satisfies:

P(X[t]IXT7) = POXG[HIX[E — 7], ..., X[t +77)  (2)

for some positive integers 7, and 7. Graphically, the above
assumption states that a variable at time ¢ can have parents



in the interval [t — 7,t + 7¢]. However, care must be taken
when dealing with boundary variables ( see [1] for details).

From this perspective, it is easy to represent an HMM as
a DBN. Indeed, the Markov properties (the dependency as-
sumptions) of an HMM, are encoded by the graphical struc-
ture shown in Figure 1. Each node in this structure repre-
sents a random variable X [t] or X,[t], whose value specifies
the state or the observation at time ¢.

Figure 1: HMM represented as a DBN

3 STRUCTURE SEARCH CLASS

Learning the structure of DBNSs, requires a search over a class
of structures. Searching over all the possible DBN structures
would be computationally infeasible. Therefore, we restrict
ourselves to a small but rich set of structures that represents
only “realistic” dependencies, in a physical and computa-
tional sense. The reader is referred to [1] for the reasoning
behind the authorized dependencies.

Let X[t] = {X&[t], Xo[t]} be the set of hidden and ob-
served variables at time t. The allowed dependencies are:

e The hidden variable at time ¢ is independent of Xt~*~!
given the last x hidden variables, for ¢t > &,
P(Xa[t]|X1™") = P(Xa[t]| X[t — &1, Xalt —1]).  (3)

e The observation variable at time ¢ is independent of all
other variables given the hidden variables in the time
window [t — 73, t + 7¢], for some positive integers 7, and
T,

P(X[t]IXT \ {Xo[t]}) = P(Xo[t]| Xalt — 73],
- Xwlt + 7¢]). (4)

Figure 2: DBN structure with (k,7p,75) = (2,1,1), T =4

Hence, the search class of allowed DBN structures is de-
fined by the triples (k,7p, ) for, 1 < & < Kmaz, 0<7p <
Tpmazy O < Tf < Tnaw, Where (Kmac, Tomas s Tfmas ) 1S a0
upper bound which restricts the size of the search class. At
the lower bound (x, 7, 7s) = (1,0,0), the structure reduces
to the standard first-order HMM (Figure 1) where, Eq.(3)
defines the state transition probabilities and Eq.(4) defines
the observation probabilities. Each triple (k, 7, 7f) specifies
a DBN structure. As an example, for (k,7p,7f) = (2,1,1),
we have the structure given in Figure 2.

If each discrete hidden variable X}, [t] takes its values in the
set of ordered labels ' I, = {1, ... N,}, and each observable
variable has a conditional Gaussian density, the numerical
parameterization of our DBNs is the following:

Py(Xp[t) = ju|llp = 1v) = aij[t], for jv €I,
Py (X,[t]|Tg; = iv) N (s, [t], 2, [t])- (5)

The (possibly) vector-index i, is over all possible values of
the variable’s parents. For the specific class of structures
we have considered, the parents are always hidden variables,
thus, i, is a point in the cartesian space I, where m is the
number of parents of the variable under consideration.

In order to provide fair comparisons in the experiments,
we compute the number of parameters required to define a
DBN. Let M be the number of parameters required to encode
the observation probability density. Then, for a left-to-right
topology, the required number of parameters to encode the
network is given by :
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C=2°N, — Zz2“+Mx2"’N 212‘“ (6)

1=1
B is defined as 8 = 1, + 75 (We assume that k,8 < N,).

4 STRUCTURAL LEARNING

In the previous section, we defined a set of plausible DBN
structures for speech modelling. In this section, we summa-
rize the learning algorithm. The details of the algorithm are
given in [1] and the references within.

Given a set of observations, our aim is to find the “op-
timal” model structure defined by the triple (k, 7, 7f), and
the associated conditional probabilities which best explain
the data. The optimality is considered in the sense that the
likelihood of observations is maximum and the structural
complexity is minimum. There are basically two scoring
metrics which allow the evaluation of the degree to which a
structure fits the data : the Bayesian Dirichlet (BD) metric,
and Minimum Description Length (MDL) (or equivalently
the Bayesian Information Criteria (BIC)) metric [6]. We use
MDL metric, which penalizes complex structures based on
the number of parameters used to encode the model. The
MDL metric is defined as follows :

Scorenpr = log P(D|O©, S) — logL SIxL I (7)

i=1

where D is the observation set, L is the number of examples
(realizations) in D and || X, Y| is defined as the number of
parameters required to encode the conditional probability,
P(X|Y). The likelihood term can be computed using the
JLO algorithm which is an efficient inference algorithm for
Bayesian networks [7].

In order to find the optimal model, we use the structural
EM (SEM) algorithm [8]. The algorithm starts with some
initial structure and parameters. At each step, the expected
scores of the candidate structures are computed according to
the scoring metric (i.e. MDL). The structure that gives the
maximum expected score is chosen as the next structure, and
the parameters of this structure are updated with a standard
parametric EM step. Updating the structure iteratively at

IThe subscript v may be omitted in these notations. We use
it however because in Section 5 we need to refer to word v in the
vocabulary.



each step, we are guarantied to increase the score and to
converge to a local maximum [8].

We initialize the algorithm with (Kmae, Tomass Tfmas) 85
the upper bound on the structure search space and use the
HMM structure for the first iteration. This initialization
guaranties that the resulting model will have a higher (or
equal) fidelity, as compared to the HMM. The trade off be-
tween the complexity of the learning algorithm and the fi-
delity of the resulting model is controlled by the upper bound
on the search space.

5 DECODING ALGORITHM

Let us assume that we are given a vocabulary V of |V|
words, and a DBN model for each word v € V, with
structure (k”,7;,7f). The decoding problem is to iden-
tify the most likely sequence of words, given a speaker
utterance. If all the DBN structures were the same, i.e.
(x°,75,7f) = (K, Tp,7f), V v, then an efficient solution to
our decoding problem is the following. The basic idea is
to build a state-augmented “super” DBN model (with the
structure (k,7p, 7)) which represents all the words in the
vocabulary. In this super model, each variable Xj[t] takes
now its values in the set I =J, , Io.

To complete the definition of this super model, we need
to specify the conditional probabilities P(X;[t]|Il;x = i), for
i € {h,o0}. These are obtained from individual word models
and the language model. First recall that II;; is always a
subset of hidden variables. When the configuration i of II;;
corresponds to the same word v, i.e. i takes its values in I},
then the conditional probabilities are given by the inside-
word parameters:

P(Xp[t] = jullTne = iv) = asj, [t], V iy € I",j, € 1. (8)
P(Xo[t] ot = i) ~ N (s, [t], B4, [£]), ¥ iy € 27774 (9)

However, there are also some configurations where some par-
ents take values corresponding to different words. These
specify the parameters for word transitions. Note that,
we only allow transitions from the last state of a word to
the first state of another, and assign zero probability for
all other configurations. We use the language model for
these transition probabilities of the hidden variable. For the
observable variable, the emission probabilities in the word
transitions are specified using the word model that is indi-
cated by the configuration of X3[t]. When X[t] = N, and
Xn[t +1] = 1,7, we assume that the emission is from word
v such that the state sequence ends at the last state. Simi-
larly, when X[t — 1] = N,» and X,[t] = 1,, we assume that
the emission is from word v such that the state sequence
starts at the first state of word v. Hence, the conditional
probabilities for the transitions between two (not necessarily
different) words v and v’ are given as:

P(X3[t] = 1,|Tp = i) = P(v|v")
Vi, € INU s.t. Il D Xh[t — ].] = N,. (10)

Po(Xoft]l(Lo - Loyt - ivtry))
for 4, = 1, and (iH—l .. -it+7—f) € I;—f.

Po(Xoltl|(it—r, - - it—1, No ... Ny)) (11)
for s = N, and (it_TP .. -it—l) (S I;—p.

0 otherwise

P(X,[t]|i) =

where P(v|v') defines the language model. Notice that, for
a left to right topology, all probabilities are set to zero for
it 7# te—1,8¢—1 — L.

Once such a super model is constructed, the decoding can
be performed using the Dawid algorithm [9] which allows the
identification (with the same time complexity as the JLO
algorithm [7]) of the most likely sequence of hidden states,
given observations. It is important to note that if the DBN
structures reduce to HMM, then this technique is equivalent
to Viterbi decoding [10].

In general, after performing a structural learning, the re-
sulting DBN structures would not be the same for all the
words. In this case, we cannot directly use the technique
described above, because we do not have, at hand, a unique
structure to represent all the words. Indeed, in the aug-
mented model when X}, [t] takes a value j, corresponding to
a word v, the independence assertions should be identical to
those imposed by the structure (s, 7,,7f). In other words,
we have to encode asymmetric independence assertions in
the sense that variables are independent for some but not
necessarily for all of their values. We present, in the follow-
ing, a technique to do so which relies on encoding the asym-
metric assertions in the numerical parameterization. The
basic idea is to build a “maximal” DBN model and use a
special parameterization to encode the asymmetry.

We find the “maximal” DBN structure (x™,7,",7f") that
is capable to encode all the dependencies represented in the
learned word models as follows :

k™ = arg max (K, Tp, Tf)v, T;n = arg max(k, Tp, Tf )v
K,V Tp U

T}n = arg I_ga‘f(”, TIHTf)U (12)

Then, for each word, we construct an equivalent DBN
with this maximal structure that encodes the same JPD as
the original word DBN. Although the Conditional Indepen-
dence (CI) assertions of the maximal structure is different
from the word DBN, we exploit the Markov properties of
the word DBN in specifying the conditional probabilities of
the equivalent maximal DBN. This comes back to setting
several of them to be equal to those given by the original
model. Precisely,

Py (X[t} = (i0,§)) = Po(XG[t]|TT;, = i)
for all i, € I}, j € T \ IT%, (13)

Now that we have a set of DBNs with the same structure,
we can construct a super DBN as described above. Note
that, since we do not violate the different CI assertions of
individual word models in this procedure, the CI assertions
encoded in the resulting super DBN are asymmetric.

Obviously, the extra parameterization in the maximal
model causes unnecessary computation while performing in-
ference. A more efficient way to encode asymmetric inde-
pendence assertions is to use Bayesian multinets (or simi-
larity networks). The theory of Bayesian multinets general-
izes Bayesian networks by using a representation employing
multiple networks and thereby allowing asymmetric indepen-
dencies [11]. Such a representation may substantially reduce
the inference complexity, still, it yields exactly the same in-
ference results as the ones obtained using the representation
described above. Since our goal, in this paper, is to show the
potential of structural learning and given the lack of space,
we do not get into the details of the Bayesian multinets ap-
proach and leave it to a future work.



6 EXPERIMENTS

In this section, we compare? the performances of DBN mod-
els to standard HMMs. Qur experiments are carried out on
the Tidigits database. In learning, we only use the isolated
part of the training database where each speaker utters 11
digits (’0’,0,1,...9) twice. As an initial step, we segment the
silence regions in the training corpus. We perform isolated
training for all HMM and DBN models based on this initial
segmentation. In all experiments, the silence is modelled
with a single state, single Gaussian HMM. In tests, we use
the full (test) database in which 8636 sentences are uttered,
each sentence contains between 1 and 7 digits. The size of
each observation vector is 35, consisting of 11 MFCCs (en-
ergy dropped), 12 A, and 12 AA. The covariance matrix is
assumed diagonal. We use a left-to-right transition topology
and a uniform language model, i.e., P(v|v') = & (V| = 12).
In the structural learning algorithm, for all digits, the upper-
bound on the search class is (Kmaz, Tomae s Tfmas ) = (251, 1).

[ (5,7, 75) | N=4 | N=5 | N=6 |
(1,0,0) 0,0.2,7
1,0,1) [ 024789 | 01,450 | 3,68
(1,1,0) 0,1,3,5,6 0,2,3,6,7,8 1,4,5,9

Table 1: Results of SEM algorithm.

We show experiments using different numbers of states,
i.e. different values of N where we set N, = N V v. In
Table 1, we show the results of the structural learning algo-
rithm. When N > 7, our system yields a standard HMM
as the best model for all digits. This shows that when an
HMM is enough to model data, our system recognize it. The
recognition scores are given in Table 2, for N = 4,5,6, the
maximal model structure is (x™,7,",7/") = (1,1,1). Our
system largely outperforms the HMM system, particularly
when N = 4. This remarkable increase in the performance
can be explained as follows. Since the number of hidden
states is small, the HMM system introduces a lot of inser-
tions. Using our system, the learned models all involve con-
text dependencies. It is well known that modelling context,
improves duration modelling. Therefore, even though the
number of states is still small, our system provides a bet-
ter digit duration modelling, and thus the total number of
insertions is drastically reduced. However, to make fair com-
parisons, we should compare our system to an HMM, with
an equivalent number of parameters. To do so, we compare
our system to an HMM with the same number of states,
but using a mixture of 2 Gaussians as the observation prob-
ability density. The average number of parameters C,, of
each system is computed by averaging the quantity C de-
fined by Eq. (7) over all digit models ®. For N = 4,5, our
system (Car = 497, 639) performs still better than HMMsq
(which actually uses even more parameters than our sys-
tem, Cqy = 567, 709). For N = 6, even though our sys-
tem uses much less parameters (Coy = 653.6) than HMMs¢
(Cav = 1551), both systems yields the same scores approxi-
mately.

As a final remark on these experiments, note that our sys-
tem allows learning of non-Markovian processes (the DBN

2Very good scores can be obtained on this database using
Gaussian-mixture HMMs and adjusted parameters. Our goal here
is not to tune the parameters in order to achieve the highest per-
formances. Rather, we want to provide fair comparisons using
baseline systems. We believe that this way we have a fair initial
judgment on the capacities of each system.

3For 1 Gaussian M = 70, for 2 Gaussians M = 140.

| N || HMM(N) | DBN(N) | HMMyg(N) |

4 20.57 63.22 46.32
5 60.92 79.86 77.99
6 77.93 84.47 84.44

Table 2: Digit recognition accuracies (%).

(1,0,1) is non-Markov, for instance). This is a major ad-
vantage with respect to HMMs. Indeed, by doing so, our
system is able to take into account the well known antici-
pation phenomenon which occurs in the speech production
mechanism. These experiments show the power of the DBN
approach to model both acoustical and phonemical aspects
of speech with higher fidelity than HMMs.

7 CONCLUSION

We used the DBN framework to construct acoustic models
that are capable to learn the dependency structure of the
hidden and observed speech processes. We presented a prac-
tical methodology to use such models in continuous speech
recognition. The approach allows the use of different model
structures for different units in the vocabulary. We showed
that using our models, we are able to achieve better recog-
nition scores as compared to equivalent HMMs.
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