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ABSTRACT

This paper presents an efficient method for recogniz-
ing isolated musical patterns in a monophonic environ-
ment, using a novel extension of Dynamic Time Warp-
ing, which we call Context Dependent Dynamic Time
Warping. Each pattern is converted into a sequence of
frequency jumps by means of a fundamental frequency
tracking algorithm, followed by a quantizer. The re-
sulting sequence of frequency jumps is presented to the
input of the recognizer which employs Context Depen-
dent Dynamic Time Warping. The main characteristic
of Context Dependent Dynamic Time Warping is that
it exploits the correlation exhibited among adjacent fre-
quency jumps of the feature sequence. The methodology
has been tested in the context of Greek Traditional Mu-
sic, which exhibits certain characteristics that make the
classification task harder, when compared with Western
musical tradition. A recognition rate higher than 95%
was achieved.

1 INTRODUCTION

This paper proposes a scheme for the recognition of pre-
defined musical patterns in a monophonic environment
in the context of Greek Traditional Music. The patterns
to be recognized have been isolated from their context
by means of a manual segmentation process, thus the
term “isolated musical patterns”. The term monophonic
refers to a single non-polyphonic instrument, the clar-
inet, recorded under laboratory conditions with an ambi-
ent noise of less than 5dB.

In the first stage of the recognition scheme a feature
generation algorithm converts the unknown musical pat-
tern into a sequence of frequency jumps (multiples of one
quarter-tone). At the heart of this stage lies a fundamen-
tal frequency tracking algorithm.

In the second stage, Context Dependent Dynamic
Time Warping (CDDTW) is employed in order to match
the previously extracted feature sequence to a set of
twelve reference sequences (one reference sequence per
musical type). The unknown pattern is determined based
on the lowest matching cost. We propose CDDTW as a
novel extension of the standard Dynamic Time Warping
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(DTW) methodology [1], [2], [3], [4], [5], [6]. Standard
DTW schemes assume that each feature in the result-
ing sequence is uncorrelated with its neighboring ones
(i.e., its context). In contrast, CDDTW permits flexi-
ble grouping of neighboring features (i.e., forming feature
segments) in order to exploit possible underlying mutual
dependencies.

To our knowledge, this is the first time that the CD-
DTW methodology is proposed and applied to the recog-
nition of isolated musical patterns in the time domain.
Previous work by the authors employed standard DTW
schemes [7] which present certain limitations. A stan-
dard DTW scheme was also used in [8], but for signals
available in MIDI format, which has severe limitations
for the majority of real world signals and in particular
for the case of Greek Traditional musical patterns. Most
previously published literature related to music sound
recognition has focused on MIDI representation, e.g. [9],
[10].

The reported research focuses on Greek Traditional
music. The musical system of Greek Traditional music
and the techniques of instrument players give the result-
ing sound material a radically different structure when
compared with that of the western equal-tempered inter-
valic system (system of musical scales).

Section 2 presents the aforementioned feature genera-
tion procedure. Section 3 presents CDDTW and Section
4 gives details of the application of our method to pat-
terns from the Greek Traditional music. Conclusions and
future work are presented in Section 5.

2 FEATURE GENERATION

At first, a sequence of fundamental frequencies are ex-
tracted from the musical pattern to be recognized. We
experimented with the following frequency domain and
time domain methods:

a) Frequency-domain approaches: Schroeder’s histogram
[11], Schroeder’s Harmonic Product Spectrum [11], Piszs-
calski’s method [12] and Brown’s pattern recognition
method based on the properties of a constant-Q trans-
form [13].

b) Time-domain methods: Cooper and Kia’s method [14]



and Brown’s narrowed autocorrelation method [15]. Also
Tolonen’s method was used [16]. In addition, we devel-
oped a new frequency-domain algorithm [7, 17] that can
be considered as a modification of Schroeder’s histogram.

After extensive experimentation with all the above al-
gorithms, we concluded that Brown’s narrowed autocor-
relation method [15] and Tolonen’s multipitch analysis
model [16] gave the best results with respect to accu-
racy and frequency doubling, provided all required pa-
rameters were rightly tuned. The new algorithm that we
employed is more efficient from a computational point of
view, yet fails to cope with the problem of absent funda-
mentals. Since this is not a crucial issue for the signals of
our study this new algorithm can be used alternatively.
However, any fundamental frequency tracking algorithm
can be used.

Let £ = {f;,i = 1... M}, be the generated sequence
of fundamental frequencies corresponding to M succes-
sive frames of a pattern. At first, each f; is mapped to
a positive number, say k, equal to the distance (mea-
sured in quarter-tone units) of f; from f, where f; is
the lowest frequency that the instrument used in the ex-
periments can produce (for the signals that we studied
fs = 146.8H z). Therefore,

k = round(24log, ﬁ)

s
where round(.) denotes the roundoff operation. As a re-
sult, the sequence of frequencies is mapped to a sequence
of positive numbers, L = {l;,¢ = 1...M}. The goal of
this step is to imitate some aspects of the human audi-
tory system, which is known to analyse an input pattern
using a logarithmic frequency axis.

In order to deal with the fact that instances of the same
musical type may have different starting frequencies, (i.e.
may appear at different frequency bands), a sequence of
frequency jumps is extracted from the symbol sequence
L. This is achieved by calculating the difference D of L,
ie.,

D={diai=L-lL1,i=2...M}

Since most of the time, l; is equal to I;_1, d; = 0 for
most of the frames (i’s). D turns out to be a sequence of
frequency jumps falling in the range of —G to G, where
G corresponds to the maximum allowed frequency jump
(G = 60 quarter-tones, i.e., 15 tones for the signals that
we studied).

3 Context Dependent Dynamic Time Warping

In the sequel, the resulting (from the unknown pattern)
sequence D = {d;,i = 1...M — 1} is matched against
a set of twelve reference patterns (one reference pat-
tern per musical type) using CDDTW. The choice of
reference patterns is based on the fact that all musical
patterns of a specific type can be considered as varia-
tions of a theoretically established model. Such models
are the result of musicological research in the context of

Greek Traditional music [18] and describe the ideal struc-
ture that should be present in all patterns of a specific
type. Each model is translated to a reference sequence
R, = {0,5,0,52,0,...,5g,,0}, I = 1,...,12, where
{S1,...,Sg,} are positive or negative frequency jumps,
multiples of one quarter-tone. There is only one zero sep-
arating successive S;’s because, as we will soon discuss,
successive zeros do not contribute to the cost. For ex-
ample, the reference pattern for musical type IT is Ry =
{0,-2,0,—4,0,-4,0,4,0}. The representative reference
patterns for the twelve musical types that we studied can
be accessed at http://www.di.uoa.gr/pikrakis/eus2002.

Feature sequences corresponding to patterns of the
same musical type, should possess the following struc-
ture

{021 ) Sla 02:27 S27 02537 TR 702R, ) SRz ) 02R,+1}
where 0, stands for zj successive zeros. In other words,
due to the phenomenon of time elasticity, such feature
sequences should, ideally, differ only in the number of
successive zero-valued d;’s, separating any two S;’s. How-
ever in practice, the following deviations from this ideal
situation are often encountered:
(a) Some S;’s can be one quarter-tone higher or lower
than what one would expect. This is due to variations
among instrument players and/or to errors during the
feature generation stage (see Figure 1).
(b) Negative or positive jumps, equal to one quarter-
tone, usually encountered in pairs, are likely to appear
in the feature sequence due to errors in the feature gen-
eration stage. Such pairs manifest themselves as sub-
sequences of d;’s of the form {-1,0,,1,04,} or of the
form {1,0g,,—1,0z,} in place of the expected sequence
Ok, +kot2 Of k1 + ko + 2 zeros. (see Figure 1)
(c) Large pitch estimation errors, generated by the fun-
damental frequency tracker, (pitch doubling or pitch
halving errors spanning more than one consecutive
frames), are also likely to appear. Such errors usually
manifest themselves as a large negative (positive) fre-
quency jump P; followed by a number of zeros and a
large positive (negative) jump @ followed by a number
of zeros.
(d) In some cases, certain S;’s are “broken” into two suc-
cessive jumps whose sum is equal to the original S; (see
Figure 1).

It must be emphasized that, with the exception of vari-
ations of type (a) and (d), all these phenomena are due
to errors in the feature generation process and have no
relation whatsoever with what the ear perceives.

3.1 Description of the CDDTW algorithm

At a first step, we define the “context of length N of a
symbol d; in the feature sequence” to be the set of symbols
{di—n+t1,di—N+2,--.,di}. At a second step, we assume
that node (4, %) of the cost grid can be reached from nodes

{(jai_]-)a(j_177:_1)7(j7i_2)7(j_17i_2)7---7(j7i_
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52 T T T T

50 *

43 L L L L
o] 20 40 60 80 100 120 140
Frame #

Figure 1: Symbol sequence L of a musical pattern of
type II, prior to calculating differences. Deviations of
type (a), (b) and (d) can be observed. If differences
are calculated, the resulting feature sequence is D =
{0217_170227_47 02:37_1702:47_3702:573702:671702:77_17028}

N),(j —1,i— N)}. In other words, the set of allowed
predecessors of (4,1%) is extended to include nodes ranging
up to N columns on the left of (4,7) in the cost grid,
excluding vertical paths, i.e excluding node (j — 1,%). In
order to define the transition costs, let us first start with
an example. Figure 2 shows a possible transition (4, 3) —
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Figure 2: The Euclidean distance below the dotted line
is the cost assigned to transition (4,5) — (4,6) via a
standard DTW scheme, whereas the distance above the

long solid line is the cost assigned to the long transition
(4,3) = (4,6)

(4,6). The cost depends on the symbols d4,ds and dg of
the feature sequence, which form the context of length 3
of dg. In order to calculate this cost, one has, at first, to
sum these symbols, thus generating a new symbol S =
d4+ds+dg. In the sequel, the Euclidean distance between
S and R;(4) is computed and this is defined as the cost
associated with the specific transition.

Summing symbols is an attempt to cancel out (from
sequence D), the deviations described in Section 3. The
longer the transition, the more complicated the devia-
tions that are canceled out. For simple deviations, such
as those of type (a), (b), and (d), short transitions are
sufficient. However, when the complex version of devia-
tions of type (c) is encountered, or when deviations are
combined to generate complex phenomena, long transi-
tions, involving up to nine symbols, are necessary. The
transition marked with a solid line in Figure 2 is a rel-
atively short one, involving the symbols dy, d5 and dg.
Transitions of this type are expected to cancel out sim-
ple deviations of type (b).

In the general case, the cost of a transition (j,7 —
k) = (4,i) or (j — 1,i — k) — (4,7) is equal to
1R (5), > tnei—kt+1 ml|- The cost Dpin(j, i) of the best
path reaching node (j,7) is therefore equal to the mini-
mum cost generated by the paths reaching (j,7) and is
computed according to the following equation

szn(] -1,i— 1) + ||Rl(.7)adz||a
szn(]az_2)+||Rl(.7)7dz+dz—1||a
Dmin(j_17i_2)+||Rl(j)adi+di—1”"“
s Doin (Gt = N) + [|R(@), D dilly
m=i—N+1
Doin(j — Li = N)+|Ri(G), Y. dmll} (1)

m=i—N+1

It is possible to reduce further the computational com-
plexity of CDDTW if the following observation is taken
into account: in the feature sequence

D = {0,-2,0,—3,0,—1,0,—4,0,4,0,1,0,—1,0}

each pair of non-zero symbols is separated by a single
zero. Due to the way CDDTW works a zero does not alter
the cumulative jumps that are calculated. Therefore, it is
possible to omit zeros entirely, both from the features se-
quence of the unknown pattern and the reference pattern.
In our example, D becomes {-2,-3,-1,—-4,4,1,-1}
and Ry becomes {—2,—4,—4,4}. This suggests that it
suffices to keep the non-zero d;’s from the original feature
sequence.

4 APPLICATION OF THE METHOD

The Greek Traditional clarinet is an instrument that
closely resembles the western-type clarinet. The lowest
possible fundamental that the instrument can produce
depends on its tuning. For the purpose of our study, this
was measured to be equal to D3=146.8Hz.

A set of 1200 musical patterns were generated by
four professional Greek Traditional Clarinet players in
a monophonic environment, involving all the aforemen-
tioned twelve types of musical patterns. For the feature



generation stage, the new fundamental frequency track-
ing algorithm along with the narrowed autocorrelation
method and Tolonen’s multipitch analysis model were ex-
tensively tested.

For the quantization step we used an alphabet of 121
discrete symbols, with each symbol being equal to a fre-
quency jump in the range of —60. ..+ 60 quarter-tones,
i.e. G =60 (Section 2).

Two sets of experiments were carried out. One us-
ing the standard DTW technique employing Itakura and
Sakoe-Chiba constraints. The latter proved to be more
robust for the signals of our interest since these con-
straints allow for long horizontal and vertical paths in
the cost grid. The success rate obtained was of the order
93%, with little variations depending on the pitch extrac-
tion algorithm used.

The other set of experiments employed the new CDDTW
scheme and the success rate was significantly improved to
above 95%. It must be stated that this method was basi-
cally immune to variations of the pitch tracking method
used. The context length for the CDDTW scheme was
set equal to 9 symbols.

All experiments were carried out using the MATLAB en-
vironment.

5 CONCLUSIONS
SEARCH

AND FUTURE RE-

In this paper an efficient scheme for the recognition of
isolated musical patterns was presented. The scheme is
based on CDDTW, a novel extension of standard DTW
schemes. The feature generation stage of the scheme em-
ploys a new fundamental frequency tracking algorithm.
The methodology was applied with success in the context
of Greek Traditional Music. A reason for this choice is
that it provides a musically homogeneous material, gen-
erated by the traditional mode of playing the instrument,
and at the same time presents many constraints (like the
unequal musical intervals and the change of the spectral
content of the sound depending on the playing mode).
Future research will focus on applying this new recog-
nition scheme in the context of Classic Western Music,
with other instruments besides clarinet and with multi-
dimensional feature vectors.
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