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ABSTRACT

This communication adresses the parameter estimation problem
using the minimization of a Whittle-type criterion when the spec-
trum parametrization is linear versus the unknown parameters.
In this case, the global convergence of a particular iterative mini-
mization algorithm is proved. This estimation method applies to
stellar speckle interferometry for the visibility estimation problem.
Simulations show the efficiency of the proposed method.

1 Introduction

The use of Whittle-type [12, 5] criterion for parameters
estimation has recently received an increased interest.
This approach allows to simply cope with the situations
where only a parametric model of the power spectrum
is available, or where a spectral model is more tractable
than the temporal model. It is the case for time series
with long range dependence, [11]. Extension of the cri-
terion to non stationary signals has been proposed in
[4]. In [6] this criterion has been applied to the tran-
sient signals. For this, the power spectrum is simply
replaced by the continuous signal energy spectrum and
the convergence is expected for an increased number of
samples on the signal support.

In many situations the parametrization of the spec-
trum is linear versus the unknown parameters, as when
the spectrum is compounded by modes with a known
shape but unknown amplitudes. The estimation prob-
lem then reduces to the minimization of a particular
multivariate function under positivity constraints. This
communication adresses the minimization problem. It
proposes to perform the minimization using an iterative
algorithm recently devised in [3] in the image restora-
tion field. The main result consists in the proof of the
global convergence of this algorithm.

Application of the method to the visibility estima-
tion in stellar interferometry is presented. In this case,
the phase of the wave coming from the object is dis-
turbed by the atmospheric turbulence and the use of
Kolmogorov’s law allows to obtain solely a parametric
model of the energy spectrum of the interferometric im-
age, [10]. The spectrum model shows that the Whit-
tle estimator extended to finite support signal together
with the iterative algorithm is particularly adapted to
this problem.

2 Estimation technique

2.1 Problem statement and general formalism

Let z,,n = {0...N—1} be a zero mean time serie which
depends on an unknown vector parameter 8. The Whit-
tle type estimator of @ is the value 8 which minimizes
the cost function:
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The structure of this cost function encloses a wide
range of estimators.

e if x,, is stationary, S(k;@) denotes its power spec-
trum at frequency k/N and I, the periodogram of
the signal at the same frequency, 8 is the standard
Whittle estimator, [12]. The same criterion struc-
ture arises for the aggregated [11] or tapered Whit-
tle estimator.

e if z, = z(nT/N) where z(t) is a continuous time
transient random signal defined on the interval
[0,T7, S(k; 0) is the energy spectrum of z(t) at fre-
quency k/T and I, the periodogram of z,,, £(0) is
the extension of the Whittle likelihood to transient
signal parameters estimation recently proposed in
[6]. Application of this criterion to visibility esti-
mation in stellar speckle interferometry is presented
in section 3.

In the sequel, the problem will be reduced to the case
where the parametrization of S(k;@) is linear versus
0, i.e., the spectrum S(k;0) is composed by M modes
Sq(k) having a known shape but with an unknown am-
plitude 6,. In order to ensure the positivity of the esti-
mated spectrum the constraint Vq 6, > 0 must be added
to the minimization of £(8):
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2.2 Optimization algorithm

An iterative algorithm for the minimization of a crite-
rion analogue to (2) has been recently proposed in [3] in
the image reconstruction context. The criterion aroused
from the minimization of the cross Burg Entropy (or
Itakura-Saito distance) between the received image and
the convolution between a known point spread function
and the restored image. Denoting S the N x M regres-
sion matrix associated to the S,(k), the iteration is:
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It was obtained setting to zero the lower bound of the
difference £(8*1) — £(0*+1) and consequently ensures
that the cost will never increase. Moreover, it can be
easily check from (3,4) that the iteration maps R+™
inside RtM and then verifies the non-negativity con-
straint.

A major problem is the study of the global conver-
gence of (3, 4). It was investigated in [3] only by com-
puter simulations where global convergence was always
observed. This section is devoted to the proof of the
global convergence for the application under scope.

First, let us establish that @ is in the interior of R*M .
The second order partial derivatives of £(0) are:
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and the Hessian of £(6) is:
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We denote by C the set where the criterion £(8) is con-
vex. The Kuhn-Tucker conditions, [9], with 8 > 0 are:

VL) -p'=0 (8)
por =0 (9)

where * is a relative minimum point and g € RTM.
These conditions mean that if the global minimum of
L(8) is not in the interior of Rt each components of
the solution of (2) can be in the interior of C or on the
boundaries of R*™ . This last case, i.e. g, éq =0,
clearly suggest that the number of modes as been over-
estimated and the estimation should be derived again
substituting M by M — 1. Consequently, we will only
consider in the sequel the case where 0 is inside C. This
assumption is of course valid as long as C N R is not
empty and does not reduce to the boundaries of RTM .

Notice that, as long as N > M, C strictly includes the
polyhedralset S = {@|Vk S(k;0) < 2I;}. Under mild
assumptions on the signal, the I are asymptotically (N
large) independent and exponentially distributed with
a variance that equals twice the spectrum at the same
frequency. See for example [2] for the stationary case.
Consequently for large N, Vk, Iy # 0. It is then possi-
ble to find a vector 8 having identical components that
belongs to S N RtM and that is not on the boundaries
of RTM:
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However, given the true parameter 6°, the probability
that the I;’s are included in S for N large is:

N-1 o
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This proves that, as long as S(k; 8°)/S(k; 8) is bounded
from below, 0 will certainly be outside & when N in-
creases.

The last point is the global convergence of (3,4). In [8]
the authors propose a general framework for the deriva-
tion of minimization algorithms with non-negativity
constraints. It relies on the use of a steepest descent
method to solve the Kuhn-Tucker first-order optimality
conditions, [9]. The application of this method to (2)
directly leads to the iterations (3,4) when the step size
is set equal 1. It is worthy to note that [3] proves that
the choice of this step size value will guaranty that the
cost will not increase. Consequently if 8] converges to
a value 8* and that Hg+ is positive defined, 8* can be a
local minimum.

The proof that 6* is the global minimum relies on the
quasiconvex property of £(6), [1], i.e. for & >0, > 0:

L(aB' + B6%) < max[L(0'),L£(07)], a+p=1. (12)

The demonstration of this result is straightforward writ-

ing £(8) = ¢(£(8)) where:
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is a real-valued function on R*™ and f(@) are N linear
functions of 8. The quasiconvexity of ¢(u) is a direct
consequence of the quasiconvexity of log(z)+1/z. Since
£(0) are linear functions defined on the convex set Rt?,
the quasiconvexity of ¢(8) implies the quasiconvexity of
L£(0), [1, theorem 6.9]. In addition, the level sets of
a quasiconvex real-valued function defined on a convex
set X C R*M are convex for every v € R*, [1, theorem
6.1]. This shows that 6* is also the global minimum of
L£(0) on RtM under the assumption that Hg- is positive
defined.



3 Stellar speckle interferometry

3.1 Spectrum model

The cost function (1) has been applied to the problem
of visibility estimation in stellar speckle interferometry.
An interferometer (composed of a pupil containing 2
telescopes in our case) samples the Fourier transform
of the brightness distribution of a source through mea-
surements of fringes visibility. With a sufficiently large
number of spatial frequencies f, several informations
about the observed source, like its angular diameter,
can be reconstructed.

However, when a stellar source is observed at the fo-
cus of a large telescope, the phase of the wave coming
from the object is disturbed by the atmospheric turbu-
lence. To improve the measurement, Labeyrie proposed
the technique of stellar speckle interferometry [7], based
on the computation of a sequence of short exposure im-
ages. The short exposure enables to freeze the turbu-
lence during the measurement, but presents the main
drawback to reduce considerably the signal-to-noise ra-
tio. It is thus necessary to acquire a large number of
interferometric images.

The acquired image equals the object convolved with
the optical transfer function characterizing both the
telescope and the atmospheric turbulence. The com-
putation of the energy spectrum S(f;8) of this image,
defined as

S(f) =E H / s(@)e— 2 2] (14)

requires an expression of the fourth-order moment of
the complex amplitude 1(u) of the randomly distorted
incoming wave front. Assuming that ¢(u) is a complex
Gaussian process, S(f) is given by [10]:

S(£) =00 B (1) + 3 (100)°T.(1)
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where:

e O(fo) is the Fourier Transform of the object at the
spatial frequency fo corresponding to the distance

between the two telescopes. The vector parameter
to estimate is @ = [|O(0) %, |O(fo)|?]t.

e To(f), the optical transfer function of the telescope,
equals to the normalized autocorrelation of one tele-
scope. Considering a circular telescope of radius r
and neglecting the central obstruction:

i) = 2 [arccos( 421) 2011 - /\2|f|2)1/2]

T 2r 2r 4r2

e B(f) = By(f)To(f) where By(f) is the second-
order moment of ¢ (u). According to the Kol-
mogorov turbulence model:

By(f) = exp(=3.44(\[f|/r0)*/®)  (16)

where 7o is the seeing parameter. ro will be as-
sumed known herein.

e 0. = [Bj(f)df = 0.342r] and s is the aperture
area of a single telescope.

The energy spectrum S(f;0) is then decomposed in:

e two low frequency contributions: |O(0)|>B?(f)
called the seeing peak and |0(0)|?(c./2s)T,(f)
called the speckle peak,

e one high frequency contribution called the fringes

peaks: |O(fo)[*(0c/48)T,(f + fo)-

The aim of this estimation problem is to compute the
fringes visibility V' (fo) (or the contrast C(fo)):

Vfo) = Vo) = .

V(fo) is generally estimated by carrying out the ratio
between the estimated fringes peaks energy computed
from locally averaged periodogram bins and the speckle
peak energy. This last is estimated fitting by linear least
squares Ty (f) on periodogram bins at | f| > 27/, where
the contribution of the seeing peak is negligible. This
estimator will be denoted as “energy ratio” in the sequel.

In [6], it has been proved that the cost function (1)
can be used to estimate the parameters of a continuous
time signal with finite support [0,7T] and energy spec-
trum S(f) sampled at T; = T/N when N is large. For
this purpose, S(k;6) in (1) denotes S(k/NT;) and I}
the averaged periodogram of short exposure interfero-
metric images. This simulation proposes to compare
the estimation of V(fy) obtained maximizing (1) using
the iterations (3,4) to the energy ratio estimator.

The interferometric images have been generated us-
ing two circular telescopes (without central obstruction)
with a diameter of 5 m separated by a 20 m baseline.
The phase ¢(u) of the complex amplitude of the dis-
turbed incident wave front is generated filtering a nor-
mally distributed independent phase screen by the filter:

Hy(f) = 0.151r, */8|£|~11/6. (17)

The interferometric image x(£) is then the squared
Fourier transform of (u) masked by the pupil. The
seeing parameter ro will take values in the interval
[5¢m, 20 ¢m] for a parametric study of its effects.
Simulations consider an unresolved source (delta func-
tion), i.e. |0(0)|? = |O(fo)|*> = 1. Values of |0(0)|?,
|O(fo)|? have been estimated using series of 20 short
exposure images each one with size N = 800 x 800.
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Figure 1: Estimated bias for the classical image’s acqui-
sition and in the photon-counting mode.

For each serie the visibility has been estimated as

—_—

|O(£0)]/10(0)]. 50 values of these parameters have been
estimated from independent series using the proposed
method and the “energy ratio” method. Two images ac-
quisition procedure are distinguished in the simulations:
the classical acquisition with a CCD camera, where a
large photons flux is available for the measurements but
with a poor resolution; the photon-counting mode where
each pixel follows a Poisson distribution conditionally to
the classical mode. In this case, the average number of
photons by image is fixed to 105.

4 Simulation results and conclusion

The algorithm (3,4) has been initialized at {10,10}. The
estimated bias (Fig.1) and variance (Fig.2) for the two
methods in the two modes of images acquisition are
given as a function of the seeing parameter r¢. The stop-
ping criterion of the iterations is |£(0%+1) — £(8)F]] <
1073, Simulation have shown that optimization algo-
rithm (3,4) is about four times faster than the Matlab
routine fminsearch used for the simulations in [6], with
the same termination tolerance for £(8).

These results clearly prove the efficiency of a para-
metric method using the spectrum model as an a priori
information. In both situations, large or weak photons
flux, and for typical values of rg, bias and variance esti-
mation shows a higher precision compared to the tradi-
tionnal method. The advantages of this technique can
be applied to a wide range of poblems as long as the
parametrization of the spectrum is linear.

References

[1] M. Avriel. Non-linear Programming - Analysis and
Methods. Prentice Hall, 1976.

80}

dB

-100

-110-
/

-120,

Classical acquisition
T T

A~

¢ - 1

P

4 1
P

/ —+- energy ratio method
/ - proposed method

dB

—80}

-100

110

-120-

Photon—counting mode
T T

/
/
£/
'/

4
//

4/

/
[v]

/| —+= energy ratio method
/ —&— proposed method

L L L L
5 10 15 20 5 10 15 20

o (€m) fo (cm)

Figure 2: Estimated variance for the classical image’s
acquisition and in the photon-counting mode.

2]

(3]

D. R. Brillinger. Times Series: Data Analysis and The-
ory. McGraw-Hill, 1981.

Y. Cao, P. Eggermont, and S. Terebey. Cross Burg en-
tropy maximization and its application to ringing sup-
pression in image reconstruction. IEEE Transactions
on Image Processing, 8(2):286-292, February 1999.

R. Dahlhaus. Fitting time series models to nonstation-
ary processes. Annals of Statistics, 25:1-37, 1997.

K. Dzhaparidze. Parameter Estimation and Hypothesis
Testing in Spectral Analysis of Stationary Time Series.
Springer Series in Statistics, 1985.

A. Ferrari and Y. Cavallin. Extension of Whittle likeli-
hood to transient signal parameters estimation. Appli-
cation to stellar speckle interferometry. In EUSIPCO,
2002.

A. Labeyrie. Progress in Optics, volume 14, pages 49—
87. E Wolf, 1976.

M. Roche, O. Cuevas, and C. Aime.
A general method to devise maximum-likelihood sig-

H. lantéri,

nal restoration multiplicative algorithms with non-
negativity constraints. Signal Processing, 81:945-974,

2001.

D. Luenberger. Linear and Nonlinear Programming.
Addison-Wesley, 1989.

F. Roddier. Progress in Optics, volume XIX. E. Wolf,
1981.

M. Taqqu and V. Teverovsky. Whittle estimator for
non-Gaussian long-memory time serie. Stochastic Mod-
els, 13:723-757, 1997.

P. Whittle. Gaussian estimation in stationary time se-
ries. Bulletin for the International Institute of Statistics,
39:105-129, 1962.



