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ABSTRACT

The Weights-Adjusted Second-Order Blind Identifica-
tion (WASOBI) algorithm was recently proposed (Yere-
dor, 2000) as an optimized version of the SOBI Algo-
rithm (Belouchrani et al., 1997) for blind separation
of static mixtures of Gaussian Moving Average (MA)
sources. The optimization consists of transforming the
approximate joint diagonalization in SOBI into a prop-
erly weighted Least-Squares problem, with the asymp-
totically optimal weights specified in terms of the es-
timated correlations. However, only correlations up to
the lag of the maximal MA order were used. Somewhat
counter-intuitively, it turns out that estimated correla-
tion matrices beyond this lag are also useful, although
the respective true correlations are known to be zero and
have no direct dependence on the mixing matrix. Nev-
ertheless, when properly incorporated into the weighted
least-squares problem, these estimated matrices can sig-
nificantly improve performance, since they bear infor-
mation on the estimation errors of the shorter-lags ma-
trices. In this paper we show how to modify the WA-
SOBI algorithm accordingly, and demonstrate the im-
provement via analysis and simulation results.

1 INTRODUCTION

Blind Source Separation (BSS) involves estimation of
the mixing matrix A in the following mixture model

zt) = Asft] t=1,2,...T, (1)

T
[sl[t] salt] --- sN[t]] are N un-
known, statistically independent source signals, z[t] =

[ml [t] za[t] -
(CMxN

where s[t] =

T
x M[t]] are the M observations and A €

is the unknown mixing matrix. The term "blind’
ascribes lack of any additional information regarding the
signals or A.

In [1], Belouchrani et al. proposed the ”Second-Order
Blind Identification” (SOBI) algorithm for stationary
source signals with distinct spectra, based on the joint
diagonalization property of the observations’ correla-

tion matrices R,[r] £ E [z[t + Tz [t]] = AR,[r]A",
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where R,[7] £E [s[t + 7] [t]] are the source signals’
(unknown) diagonal correlation matrices.

Following estimates of the observations’ correlation
matrices at different lags, SOBI seeks the approximate
joint diagonalization of these matrices in two phases:
The first phase is a ”whitening” phase, in which the
observations are spatially whitened, such that the em-
pirical (estimated) correlation matrix at lag zero equals
the identity matrix. Subsequently, a unitary matrix is
found, using, e.g., successive Jacobi rotations ([1], [3]),
such that the set of whitened empirical correlation ma-
trices at nonzero lags are most closely diagonalized. The
estimated mixing matrix A is then given by the product
of the unitary matrix and the inverse of the whitening
matrix.

The procedure described above can be regarded as
an attempt to attain a Least-Squares (LS) fit of the es-
timated correlation matrices in terms of the unknown
parameters (the mixing matrix and the sources’ correla-
tions). However, it also implies some special weighting
of the LS criterion, which is generally far from optimal.
It was therefore proposed in [5], [6] to transform the
joint diagonalization into a properly weighted LS (WLS)
problem. In the case of source signals which are Gaus-
sian Moving-Average (MA) processes of known maximal
order (denoted Q) , the optimal weight matrix can be ex-
pressed in terms of the observations’ correlation matri-
ces up to lag Q). Consequently, since all of these matrices
would usually be estimated as the set to be jointly diago-
nalized, these estimates can also serve for the secondary
purpose of computing the optimal weight matrix. Since
the correlation estimates are consistent, the asymptotic
behavior of such a scheme would approach the use of
the true (optimal) weight matrices. This algorithm was
termed the ”Weights-Adjusted SOBI” (WASOBI).

Although the number of estimated matrices (actually
the number of lags) to be used was not restricted in [5],
[6], both the analysis and simulations only addressed
lags less or equal to Q. This was mostly based on the
property, that for MA processes the true correlations at
farther lags are all zeros, and hence do not contain any
information on the mixing matrix. Nevertheless, it turns



out that although the true (all zeros) correlation matri-
ces at farther lags are ”useless”, their estimated counter-
parts, when estimated from the same data used for es-
timating the ”useful” matrices, bear information on the
estimation errors of these ”useful” matrices. Therefore,
exploiting the correlations between the estimation error
of the "useless” matrices and the estimation errors of
the "useful” matrices in the WLS framework can signif-
icantly improve the performance. A similar observation
was recently proposed in [4] in the context of spectral
estimation of MA processes.

However, straightforward extension of WASOBI, to
merely use correlation estimates up to lag Q' > @ would
not fully exploit the knowledge that true correlations
at farther lags are all zeros. This information has to
be incorporated into the LS model, in order to prevent
the algorithm from attempting to jointly diagonalize the
extra matrices as well. In addition, the information for
the weight matrix should only be extracted from the first
Q) estimated matrices, and not from all Q' estimated
matrices.

In this paper we derive the extended WASOBI algo-
rithm, which uses Q' > () matrices, but keeps the MA
model order fixed at (). The derivation also enables to
obtain analytic expressions for the resulting asymptotic
performance. We present analytic results, and compare
to SOBI and WASOBI using simulation results as well.

We shall focus on the case M = N = 2 real-valued
signals with a real-valued mixing matrix. Extension to
the more general case is straightforward, but requires
some more complicated, extended notations, which we
choose to avoid in here, since they are irrelevant to the
essence of the algorithm.

2 FORMULATION AS A WEIGHTED LS
PROBLEM

We assume throughout, that the source signals are all
MA processes, whose orders are known to be less or
equal to ). The estimated correlation matrices are de-
noted R,[k] for K =0,1,...Q', where Q' > Q:

o[k = %Zw[t]wT[t +H E=0,1,.Q" (2)

Note that since all matrices are estimated from 7" sam-
ples, (2) assumes implicitly that the actual number of
available samples is T + Q'. This is somewhat wasteful
in the sense that not all available data points are used
for the smaller lags. However, this wastefulness is negli-
gible when T is large relative to @', and this assumption
simplifies the derivation of optimal weights in the next
section.

Formulation of a LS model requires the description
of the available (inaccurate) measurements in terms of
the parameters of interest. We use the elements of the
estimated correlation matrices as the set of raw mea-
surements. We seek a 2 X 2 matrix A and @ + 1

diagonal matrices Ag,A;...Aq such that R,[k] are
"best fitted” by AALAT for k = 0,1,...Q (only),
whereas the other Q' — () matrices are fitted by ze-
ros. Thus, there are four parameters of interest, denoted
a £ vec{A} = [AD AZD A2 ACT and 2(Q +1)
nuisance parameters, which are the () +1 2 x 1 vectors
Ak 2 diag{Ar} k = 0,1,...Q. However, due to the
inherent scaling ambiguity (which enables to commute
scales between A and Ay), we may arbitrarily fix e.g.
Ay, reducing the true number of nuisance parameters to
2Q.

Note that the estimated R,[r;] are not necessarily
symmetric (for 73, # 0), in contrast to AAy AL, We shall
thus attempt to fit each AA, AT to a symmetric variant
of the respective R,[r;], obtained by substituting its
off-diagonal terms with their arithmetic average. We

therefore define 7 = vec{ R[]} and

Y. 2Crp k=0,1,...Q, (3)

where C' is a constant transformation matrix,

L[t o000
c=|0 ; 3§ 0f, (4)
00 01

are the actual measurements of the LS model. The de-
sired fit for each k can then be written as

Y, & G(a) . (5)

where the matrix G(a) is given by

A a? a’
G(a) = |a1a2 aszaq| . (6)

a; a4
. . A
Concatenating the first @ + 1 y,-s into y =
A

[yl ---y5]", and the other Q' — Q y;-s into §

(Y6 119512 yo " we get
A ~
y ~ [Ho+1 ®G(a)]A=G(a)A (7)
y =~ 0 (8)

where I'g41 denotes the (Q+1) x (Q+1) identity matrix,
® denotes Kronecker’s product, A = [Ag AT -- -Ag]T is
the concatenation of A, and 0 denotes a 3(Q' — @) x 1
all-zeros vector. We also define

X=[ATA7 A0, 9)

the vector of free parameters in .
Given any 3(Q' + 1) x 3(Q' + 1) symmetric weight
matrix W, we may now define the WLS criterion as

Cwrs(a,A) 2 [ y—%‘(a))\ ]TW [ y—G(a)A ]

(10)

< Q2



If we further partition W into

Wi, le]
W = 11
{W{z W (11)

where W11 is (Q + 1) x
expressed as

Cwrs(a,X) = [y — G(@)A" Wi [y — G(a)A]
+2[y — G(a) A" Wio§ + §" Waod,

(@ + 1), then Cyrs can be

(12)

to be minimized with respect to (w.r.t.) a and A,
with A; set arbitrarily. While linear (quadratic) in A,
this WLS criterion is nonlinear in a. Several methods
for minimizing Cyrs can be considered. For example,
Gauss iterations (see e.g. [7]) can be used. However, To
exploit the linear part (w.r.t. A), the Gauss iterations
may be restricted to the nonlinear minimization w.r.t.
a with A fixed. Thus, Cyyrs can be minimized by alter-
nating between linear (closed-form) minimization w.r.t.
X with a fixed, and vice-versa. Another appealing ap-
proach would be to interlace minimizations w.r.t. A with
the Gauss iterations. The SOBI estimate may be used
as an initial value for the iterations.

3 OPTIMAL WEIGHTING

The LS criterion presented above allows the use of any
(arbitrary) weight matrix W. Naturally, we would like
to use the optimal weight matrix, which is well-known
(e.g. [7]) to be the inverse of the measurements’ covari-
ance matrix. Thus we need the covariance matrix of the
entire ”measurements” vector [y”§”], which we shall
denote ®. It is only through the use of this augmented
covariance matrix, that the information in § can be-
come useful in improving an estimate based merely on
y. Assuming Gaussian signals, we have from (2)

B[R RR"" 1] =

% YD E [ﬂfz‘[t]%’ [t + k]zm[s]zn[s + l]] -

t=1 s=1
R [k R [1]+
T—-1
1 Pl\ pi,m n (13)
Y - P REmGRGI 11— K
p=—(T-1)
1 & |\ (i) (j.m)
T Z (1_T)Rz, I:p_{_l]R:c’ [p_k]

p=—(T—1)

k,1=0,1,...Q
which implies that the covariance of R [k] and
R;m’n) [] is given by sum of the last two terms. Now,
since the source signals are MA of orders < @, we have
R.[p] = 0 V|p| > Q; since the lags k,l are all non-
negative, there is at least one zero factor in each expres-
sion for |p| > @, so the summation over p can be reduced

to —@Q to Q. Consequently, estimating the correlation
matrices up to lag @ is sufficient for consistently esti-
mating ®. The use of the other estimated matrices, for
lags between @ and Q' would only serve for augmenting
the WLS criterion, but not for determining the weight
matrix.

With slight manipulations (13) can be reformulated
in matrix form as

Covlty, 7] =

Q
|p| R T — Tk R
_Z_: [p+ ] ® Ry [p]+ "

Q
Z |p| )(Ralp — 7] © Ry[p— 7)) P

where P is a permutation matrix that swaps the second
and third columns of the matrix to its left. Recalling
the linear transformation (5) from # to y, we conclude
that the (k,1)-th 3 x 3 block of @ is given by

A L
@ = Covlyy,y,] = CCoulfy, #]CT. (15)

The optimal weight matrix is then given by W, =
&' In practice, estimated correlations would replace
true correlations in (14), providing a consistent estimate
of Wi Thus the resulting weights are asymptotically
optimal. Under non-asymptotic condition, however, the
estimated covariance matrix ® may be ill-conditioned,
or even sign-indefinite, having very small (negative or
positive) eigenvalues. In order to avoid numerical prob-
lems, it is recommended under such conditions to artifi-
cially improve the conditioning of ® before inversion by
adding a small constant to its diagonal.

4 SIMULATIONS RESULTS

Fig. 1 presents some simulations results in terms of
the mean Interference to Signal Ratio (ISR) for SOBI,
WASOBI, and Extended WASOBI vs. the observation
length T. The source signals used were MA(4) and
MA(2) processes: si(t) is an MA(4) process with ze-
ros at 1.2e*7%, 0.9e*75 (and their reciprocals); sa(t) is
an MA(2) process with zeros at —0.75e*73 (and their
reciprocals). We thus have ) = 4. The extended WA-
SOBI algorithm was run with @' = 6. All algorithms
used the same data. Each simulation point represents
an average of 400 trials. The mixing matrix used was
A=[31].

To put the simulations results in context, we also
present (in solid lines, superimposed on simulations re-
sults) the theoretically predicted performance: Since the
”measurements” y, g are unbiased (their expected value
are the true correlation values), the estimated parame-
ters are also unbiased, under a small-errors assumption
(regardless of the weighting used). Using the derivative
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Figure 1: Simulations results (and theoretically predicted

results) for SOBI, WASOBI and Extended WASOBI (with

@' = 6) in terms of the ISR for s1[n], vs. the observation length T'. Source signals are MA(4) and MA(3) Gaussian
processes. Both algorithms used the same data. Fach simulation point represents an average of 400 trials.

of the LS criterion (10) with respect to all the param-
eters, as well as the measurements’ covariance ®, stan-
dard tools can be used (e.g. [7]) to obtain the (approx-
imate) error covariance in estimating a, the elements
of A. This covariance can in turn be translated to the
mean ISR obtained when the estimated A is used for re-
construction of the source signals. See [5] for an explicit
derivation. The resulting expressions are general, and
can be used with any weight matrix W. The analytic
results for WASOBI and Extended WASOBI were cal-
culated using the true optimal weight matrix, whereas
for the simulations results the estimated optimal weight
matrix was used. It is seen, as expected, that asymp-
totically the simulation values coincide with the pre-
dicted values. For SOBI, a weight matrix attributing
high weight for the zero-lag correlations was used to pre-
dict the performance. The simulations results are seen
to asymptotically approach their theoretical values.

5 CONCLUSION

We have shown that when the optimally weighted WA-
SOBI algorithm is used, its performance can be fur-
ther improved by incorporating estimated correlation
matrices from lags beyond the MA order. The fact
that the true correlations at these lags all zero out is
used for proper parameterization the LS model and for
estimation of the (asymptotically) optimal weight ma-
trix. Note that these additional matrices can only be
exploited with the WASOBI algorithm through the use
of proper weighting. They remain practically useless for
the basic SOBI algorithm.
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