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ABSTRACT 
 
In this paper we describe two efficient software 
implementations of bi-dimensional IDCT (Inverse 
Discrete Cosine Transform). Instead of using a traditional 
separation into eight horizontal and vertical mono-
dimensional IDCT stages, we apply a novel approach to 
directly represent the bi-dimensional IDCT into only eight 
mono-dimensional units followed by a network of addition 
and subtraction operations. We have then optimized this 
method in pure ANSI-C for 32-bit architecture VLIW 
(Very Long Instruction Word) processors. By arranging 
the network structure in a proper way to exploit sub-word 
parallelism and by defining totally new multimedia 
instructions, we have implemented a second version that is 
23% more efficient than the previous one. Our fixed-point 
arithmetic IDCT implementations are fully compliant with 
the IEEE 1180 standard, as required by most of the video 
compression standards. 
 

1. INTRODUCTION 
 

In this paper we describe a fast algorithm of 8x8 bi-
dimensional IDCT that is then implemented in two 
versions: the first in pure ANSI-C style, the second based 
on SIMD (Singe Instruction on Multiple Data) extensions 
to the C-language. The target processors are ST210 and 
TM1100, both having 32-bit VLIW CPU architectures.  

The organisation of this paper is the following: 
Section 2 describes the main features of the two adopted 
VLIW CPUs. Section 3 illustrates the IDCT algorithm we 
have implemented in software (SW). Section 4 deals with 
the new SIMD we have defined to increase execution 
efficiency. Sections 5 and 6 respectively give performance 
figures and draw our conclusions. 

 
2. TM1100 AND ST210 VLIW CPU CORES 

 
Instruction Level Parallelism (ILP) speeds up programs by 
executing in parallel several elementary RISC operations, 

such as memory load and store, integer addition and 
multiplication. In a VLIW CPU these operations are taken 
from a single stream of execution, rather than from parallel 
tasks. Thanks to sophisticated algorithms that extract ILP 
from applications written in C-language, the compiler 
schedules (statically) the code to optimally fill most of the 
functional units of the VLIW CPU [16]. This parallelism 
is transparent to the user, although the programmer may 
restructure his code according with some proper rules to 
help the compiler to achieve a high degree of ILP.  

Multimedia applications in digital consumer 
market require high performance and low cost silicon 
implementation combined with minimum time-to-market. 
The current trend of many silicon manufacturers is to build 
VLIW processors to allow many functions to be 
implemented as SW algorithms instead of HW circuits, 
since a customized VLIW-based device can offer greater 
flexibility at the cost of hard-wired logic.  
  To this purpose the ST200 family of VLIW 
customizable processors has been jointly developed by 
Hewlett-Packard Laboratories and STMicroelectronics 
[10] and recently presented [11,12]. The family is based 
on a modular 4-issues architectural block named “cluster”, 
with seven 32-bit functional units. A cluster can perform 
up to four integer RISC operations in every clock cycle 
(with the constraint of a single load/store per cycle), 
therefore the maximum ILP achievable is 4 and the 
maximum instruction length is 128 bits. N clusters can be 
connected together to form a CPU with 4xN issues. The 
first test chip of this family, named ST210, is a single-
cluster 4-issues CPU, it allows the equivalent of 1GHz 
RISC performance. The ST210 processor is equipped with 
64 general-purpose 32-bit registers, 32KB I-cache and 
32KB D-cache memories. A key benefit of ST200 family 
is that it combines a relatively simple but highly flexible 
architecture with very sophisticated compilation tools. 
Therefore, enhancements to the micro-architecture, such as 
new custom-instructions and number of clusters, can be 
analyzed and the resulting cost/performance characteristics 
quickly and reliably investigated before committing to an 



architectural decision. In Section 4, we define and propose 
new multimedia instructions for a future ST210-variant. 
 The TriMedia family was presented in [13]. 
Every device is a complete System-On-Chip (SOC) 
containing a VLIW CPU accompanied by intelligent A/V 
peripherals. The TM1100 processor [14] has 128 general-
purpose 32-bit registers, D-cache size of 16 KB and I-
cache of 32 KB. TM1100 has a very different VLIW 
approach in comparison with ST210 architectural 
simplicity: there are twenty-seven different functional 
units but only five of them can be filled in a clock cycle 
(with a maximum of two load/store operations per cycle). 
Because of the number of available functional units and 
their assignment, some operations may have to wait for 
one or more cycles before they are executed, which means 
that it is not possible to choose every mixing of such 
operations. The 133MHz clock frequency allows the 
equivalent of 666MHz RISC performance on its 5-issues 
VLIW CPU (without considering its SIMD extensions). 
 We have emphasized these aspects to show that, 
although dedicated mainly to ST210, our novel IDCT 
implementation is suitable for any VLIW processor, being 
ST210 and TM1100 very different machines. 

 
3. INVERSE DCT 

 
The DCT concentrates most of the energy distribution into 
a few frequency coefficients. This important propriety 
makes this transform, together with its inverse (IDCT), a 
valuable tool for well-known compression standards of 
still and moving pictures, like JPEG, MPEG-1, MPEG-2, 
MPEG-4, H-261 and H.263. In these systems the DCT is 
normally applied bi-dimensionally on a square block of 
8x8 pixels. Being a separable transform, an 8x8 DCT can 
be separated, for example, in eight horizontal mono-
dimensional DCT stages (each working on an 8-sample 
row) followed by eight vertical DCT stages (each working 
on a column of 8-coefficient previously produced by the 
horizontal modules). Vice-versa, the decomposition can be 
done first on vertical and then on horizontal direction; the 
result is exactly the same because of the DCT linearity 
property, given sufficient accuracy in fixed-point 
arithmetic implementation. 

In theory, an 8-sample mono-dimensional DCT 
requires 64 multiplication and 56 addition operations, 
which makes its usage very expensive in consumer market 
devices. Therefore, several computationally efficient 
algorithms have been developed to reduce the DCT 
complexity. The methods reported on  [1,2,3,4,5] 
represent just few examples among the large variety of 
articles available in literature and apply the above-
mentioned property of separability. For instance, the 
MPEG-2 Test Model 5 video encoding SW reference 
model [6,7,8] makes use of the five-stages Wang’s IDCT, 
based on sparse-matrix factorization (this class of matrices 

has few non-zero coefficients) [1]. Wang’s 8-point DCT 
uses only 29 addition and 11 multiplication operations 
instead of the 56 plus 64 theoretically required. As we will 
describe in Section 5, this algorithm can be very efficiently 
optimized in C-language on VLIW CPUs.  

In a recently appeared paper [9], Huang/Wu 
propose a fast direct bi-dimensional DCT based on index 
permutation. The mathematical description of such 
algorithm is beyond the scope of this paper. Coarsely, we 
can say that an 8x8 bi-dimensional DCT can be computed 
through eight (8-sample) mono-dimensional DCT units 
followed by a network of four butterfly stages, as shown in 
Figure 1. Since the network is independent on the mono-
dimensional DCT calculation, any DCT algorithm can be 
used: in our case we have applied the above Wang’s DCT 
given its good performance on VLIW CPUs. We 
emphasize that not all the final 8x8 outputs are exactly the 
required 8x8 DCT values, because of a simplification used 
in the algorithm; as a consequence, we have put fifteen 
additional multiplications to rescale the related output 
values that differ from the required ones (in the last stage 
“MULs” of Fig 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Structure of Huang/Wu direct DCT. 
 
A butterfly is a structure with an addition-

subtraction pair of operations, as shown in Figure 2. When 
we analyzed the algorithm of Huang/Wu, we had the 
intuition that the network of post-butterflies could be 
suitable for a SIMD implementation. Effectively, during 
the fixed-point arithmetic modeling, we realized that a 16-
bit intermediate data representation in the network was 
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enough to provide a DCT suitable for image processing. 
The possibility to represent the network of butterflies with 
16-bit samples, allows us to investigate on sub-word 
parallelism, by packing 16-bit data into 32-bit words, as a 
first step to target a SIMD implementation. 

We have also inverted the proposed forward DCT 
in order to obtain its inverse transform. This IDCT can be 
graphically described by a network of butterflies, followed 
by eight mono-dimensional IDCT units; it corresponds to 
the same graph of Fig.1, with flow from right to left.  
  
 
 

 
 
 
Figure 2: Graphical symbol of a butterfly structure. 
 

4. BUTTERFLY SIMD 
 

Several multimedia applications spend significant amounts 
of execution time dealing with 16-bit sub-words. Using 
32-bit operations to manipulate these small data items 
makes inefficient use of a 32-bit ALU (Arithmetic Logical 
Unit). There is little cost difference between a standard 32-
bit functional unit that can process one pair of 32-bit 
operands and a SIMD-enhanced ALU that can also 
process two pairs of 16-bit operands. If we could apply the 
32-bit functional units to operate on two 16-bit data items 
simultaneously, performance would be improved by a 
significant factor. In fact, a SIMD is equivalent to several 
elementary RISC operations and can be issued in a single 
clock cycle like any other “traditional” operation by the 
VLIW CPU.  However, a C-program that uses SIMD 
extensions is no more ANSI compliant: in fact the 
compiler has to manage SIMD instruction as assembly 
intrinsic, that is, built-in C-language functions 
corresponding to the processor assembly instructions. 

The first stage of the network in Figure 1, 
immediately contiguous to the eight mono-dimensional 
DCT units, is very regular. With a careful selection of the 
pairs of 16-bit data within each 32-bit operand, this stage 
could be implemented by “classical” SIMD instruction 
like TM1100 DualAdd and DualSub [13]. Unfortunately, 
starting from the second stage, the same SIMD 
instructions are no more easily applicable. A complex set 
of operations to re-order the packed data is necessary 
before going on with the following stages, but the 
overhead of these extra packing/unpacking instructions 
diminishes dramatically the potential performance gain 
obtained by DualAdd and DualSub SIMD. 
 To solve this problem, since the only regular 
structure inside the post-butterflies network is the butterfly 
itself, we mapped it into a new set of SIMD instructions, 

never used by other microprocessor manufacturers to our 
knowledge. In order to freely select the input 
configuration, four possibilities are considered, depending 
on the desired high/low part of the input operands, named 
respectively Butterfly_HH, Butterfly_LH, Butterfly_LL 
and Butterfly_HL, as shown in Fig. 3. Each instruction has 
two input registers that provide the two 16-bit sub-words, 
the output is a packed 32-bit word composed by two 16-bit 
signed integer values: one represents the sum of two 16-bit 
data items, the other one their difference (note that 
reversing the higher or lower part of the output is 
transparent for the application and for this new SIMD 
proposal).  
 

5. PERFORMANCE 
 
To compare the results in a consistent way, we define the 
“normalized-ILP” as the ratio of “effectively achieved” 
and “theoretically achievable” ILP values. Therefore, the 
maximum normalized-ILP is always 1.0, independently on 
the number of issues of the processor (we remember that 
ST210 and TM1100 have respectively 4- and 5-issues 
VLIW CPUs).  The IDCT is measured in clock cycles per 
one block of 8x8 pixels, but these cycles are of VLIW 
nature and then they will be multiplied by the effectively 
achieved ILP, in order to obtain the equivalent amount of 
operations per block from an ideal RISC processor, 
referred as “op/blk” in the following. 

The five-stages Wang’s bi-dimensional IDCT [1], 
optimized in C-language, takes around 1155 ops/blk on  
ST210 and 1114 ops/blk on TM1100 (without any 
optimization, the original C-program was about three 
times less efficient on both processors). The normalized-
ILP values are respectively 0.84 (3.36/4.0) and 0.93 
(4.66/5.0) for ST210 and TM1100, with related code size 
of 5240 and 4110 bytes. 
 Our ANSI-C implementation of Huang/Wu’s 
IDCT requires respectively 980 and 884 ops/blk on ST210 
and TM1100 CPUs, with a related normalized-ILP of 0.97 
(3.88/4.0) and 0.92 (4.64/5.0). Again, as for the Wang’s 
case, these ILP figures are quite good and demonstrate the 
efficient usage of the machine resources. However, 
Huang/Wu’s algorithm is better than Wang’s one for two 
reasons: 1) it is less complex and it saves about 15% 
(ST210) and 20% (TM1100) of ops/blk, 2) it allows code 
size reduction: 3976 (ST210) and 3226 (TM1100) bytes, 
which represent a factor respectively of 24% and 21%, 
depending on the processor. 

Although the ST210 does not have SIMD in its 
instruction set, its tool-chain allows the simulation of new 
instructions for architectural exploration of its variants. By 
assuming that any Butterfly SIMD have a latency of 1 
clock cycle on the ST210, the SIMD implementation 
achieves a result of 750 ops/blk with a normalized-ILP of 
0.96 (3.84/4.0) and code size of 3088 bytes. In term of 
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ops/blk, this result represent a performance improvement 
of about 23%, related to the pure ANSI-C version (for 
sake of clarity, we emphasize that only the network is 
implemented with butterflies SIMD, the eight DCT units 
remain in pure ANSI-C). Unfortunately we could not test 
these SIMD on the commercially available TM1100 tool-
chain, which does not allow to add and to simulate new 
instructions. If we compare the SIMD-based Huang/Wu 
implementation with ANSI-C Wang’s one, our total gain is 
35% in terms of ops/blk. Table 1 shows a performance 
summary. 

Finally, both Wang’s and Huang/Wu’s (either 
ANSI-C or SIMD) fixed-point arithmetic implementations 
are fully compliant with the IEEE 1180 standard [15], as 
required by almost every picture and video compression 
standard.  

Figure3: The new butterfly SIMD instructions, proposed 
for an ST210-variant. 
 

6. CONCLUSION 
 

In this paper we presented our fixed-point arithmetic 
implementation of a direct IDCT, according to Huang/Wu 
[9], as the composition of eight mono-dimensional Wang’s 
IDCT [1] modules plus a network of butterflies stages, for 
a pure SW implementation of DCT-based video encoding 
systems. This algorithm can be mapped very efficiently in 
ANSI-C language on different VLIW CPU architectures, 
like ST210 and TM1100, with a performance gain in the 
range of 15% and 20% when compared with a separable 
bi-dimensional pure Wang’s IDCT [1].  

For an ST210-variant, we also defined totally 
new SIMD instructions that fit the algorithm to the 
architecture with an efficiency 23% greater than its ANSI-
C version and 35% better than the Wang’s bi-dimensional 
IDCT.  

 

 

Table 1: Performance summary. 
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algorithm ST210 TM1100
ops/blk code-size ops/blk code-size

bytes bytes
Wang (ANSI-C) 1155 5240 1114 4110
Huang/Wu (ANSI-C) 980 3976 884 3226
Huang/Wu (SIMD) 750 3088


	EFFICIENT IDCT IMPLEMENTATIONS ON VLIW PROCESSORS
	ABSTRACT


