TIME SEQUENCE INFORMATION WITHIN A
GAUSSIAN MIXTURE MODEL

R.P.Stapert and J.S.Mason
Speech and Image Research Group
Department of Electrical and Electronic Engineering
University of Wales Swansea

Department of Electrical and Electronic Engineering
SA2 8PP, UK

Robert.Stapert@aculab.com

J.S.Mason@swan.ac.uk

http://galilee.swan.ac.uk *

ABSTRACT

This paper addresses the task of text independent
speaker recognition and in particular looks at captur-
ing time sequence information within the modelling pro-
cess itself. A recent extension to the popular Gaussian
mixture model (GM M) is the segmental mixture model
(SM M), and its advantages are thought to be more pro-
nounced as more and more training data becomes avail-
able. Here this idea is examined along with a hypothesis
on model size, model complexity and their dependencies
on the quantity of available training data. Experimental
results on a 2000 speaker database show that an SM M
does offer better recognition results than a GM M once
a threshold in the amount of training data has been
reached.

1 INTRODUCTION

Time sequence information (T'SI) is the bastion of
speech recognition where the task is to minimise speaker
specific information in the models and maximise speech
specific information. The temporal sequence in a signal
is directly related to what is said, i.e. the speech content,
and this is fundamental for speech recognition. In con-
trast in text independent speaker recognition it is sought
to minimise speech specific characteristics and maximise
characteristics associated with the speaker. To this end,
vector quantisation and Gaussian mixture modelling do
not include within the model any temporal constraints.
The use of models that do use temporal information
(such as hidden Markov models and dynamic program-
ming techniques) has, until recently [1], shown no ad-
vantage over the GM M for text independent speaker
recognition [2, 3]. However, T'ST can also be harnessed
from dynamic features, commonly used in both speech
and speaker recognition and first proposed by Furui in
1981 [4] in the form of the regression features in the
context of speaker recognition. It is the widespread use
of such dynamic features in text independent speaker
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recognition that confirms the potential benefits of time
sequence information.

In a recent paper [1] the current authors introduced
the segmental mixture model (SMM). This uses dy-
namic time warping (DTW) to incorporate time se-
quence information. Yu et al [5, 6] has shown that
DTW can be superior to vector quantisation V@ [7]
and hidden Markov models HM M in a text dependent
speaker recognition task and this provides motivation to
combine DTW with the most popular text independent
technique, namely the GM M.

The amount and quality of data are known to be in-
fluential factors in speaker recognition performance, and
these factors are application dependent. At one end of
the scale there might be just a few short utterances, at
the other end of the scale, in terms of data, there is the
situation where very large quantities of data are avail-
able, both for testing and training. Broadcast recordings
present such a situation. It would be possible to collect
large quantities of data from well-known broadcasters
or entertainers, build models from this data and use
these to search the archives for instances of these peo-
ple. A recent paper by Doddington [8] addresses this
latter scenario of large amounts of data, and shows that
word frequencies are potentially useful in discriminat-
ing people. This idiolectic based approach in this case
demonstrates the benefits of N-grams, thereby present-
ing an interesting contrast to the conventional atomic
unit level spectral-based approaches which have domi-
nated the field to date.

The VQ and GM M approaches can be thought of
as operating on atomic levels in speech space, with po-
tentially many thousands of components in the model.
However, Doddington has shown very clearly that in-
formation at a completely different level, well beyond
the atomic level, can be useful. He has shown that a
speaker will display a degree of text-dependency and, as
a consequence, recognition systems should incorporate
a corresponding degree of text-dependence. This raises
the question of how best to harness the T'ST informa-
tion. In other words, how might the approach change as
more data becomes available? This paper is concerned



with the approaches taken to speaker verification as the
amount of speech data changes.

It is obvious from [8] that a practical system based
solely on atomic unit level spectral features with no
higher level TST will be sub-optimal, certainly when
large amounts of data are available. Here we take a small
step in this direction by considering small segments of
speech, just beyond the atomic level. The belief is that
with ever increasing amounts of data, these sgements
can become larger.

Dynamic time warping is traditionally employed in
text dependent tasks. However, by applying it to short
feature sequences the DT'W constraints can be useful in
a text independent mode especially as part of a GM M.
The SM M is a step from the pure atomic level of frames
spanning tens of milliseconds towards the much higher
level of N-grams for which the speech might span a sec-
ond or so. As presented here it is only a small but po-
tentially useful step; in practice greater steps are likely
to demand greater amounts of training data.

2 SEGMENTAL MIXTURE MODEL

In a Gaussian Mixture Model (GM M) each component
consists of a mean, a covariance matrix and a weight.
The density for component 7 of the model given the in-
put vector ¥ is given by Equation 1 where X; is the
covariance matrix and ; is the mean vector. D is the
dimension of the vector. A simplified form, popular in
practical speaker recognition, has each component con-
sisting of a mean, the diagonal of the covariance matrix
and a weight.
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In the segmental mixture model, proposed in [9, 1],
each mixture component of the standard GM M be-
comes a short sequence of single components called a
segment. The segments are compared using dynamic
time warping (DT'W) [10], which has proved successful
in both speaker and speech recognition. It is regarded
as a template pattern matching approach where two se-
quences are optimally aligned and matched according to
prescribed similarity scores.

For the SM M, the GM M similarity measure is mod-
ified to apply to segments rather than single vectors.
The probability of input segment Oz given a model is
shown in Equation 2 as the sum of M weighted segment
densities, w; is the segment weight and ranges from 1 to
M where M is the total number of model components.

A segment density b;(0z) is equal to the simplified
Equation 3, where d,, is the DTW warp difference be-
tween an input segment [z and a model segment, and
T15 |22 is the product of the diagonal covariance ma-
trices taken along the warp path. K is the size of the
segment measured in vectors.

The DTW warp difference is given in Equation 4,
where W is the normalised sum along the warp path, &
and mi;, are individual vectors of the test and model

segments.
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3 MODEL COMPLEXITY
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Figure 1: Hypothetical performance of three models of
increasing complexity, A (Atomic) + 0 to 2, for three
amounts of data, minimum (a), medium (b) and maxi-
mum (c).

It is proven that information is available both at the
atomic level and at the N-gram level. To make use of



this higher-level information much more training data
must be available than that conventionally considered
in speaker verification studies. And more data means
potential for models with greater complexity.

Figure 1 depicts the performance of three hypotheti-
cal modelling approaches of increasing complexity, mov-
ing from the atomic (A) upwards (labelled A+0, A+1
and A+2). For this thought experiment the models are
trained on a given (constant) amount of speaker specific
data and they do not utilise general global speech in-
formation. In Figure 1(a) the amount of training data
is small, for instance a single utterance, in Figure 1(b)
more data is available, a number of minutes worth, and
in Figure 1(c) it is very large, hours or even a lifetime’s
worth. The figure shows the hypothetical effect of in-
creasing the model size on the recognition error for the
three amounts of speaker-specific training data.

In Figure 1(a) The profiles show that the most com-
plex model (A+2) curves upwards first, followed by the
second most complex model, A+1. The amount of train-
ing data is small and is not sufficient to estimate com-
plex models.

Figure 1(b) shows a similar scenario to Figure 1(a)
except that more data is available. The most complex
model begins to curve upwards at a certain point, due
to under-training. This point represents the model size
at which the amount of training data is no longer suffi-
cient to accurately train all the components. However,
the other models continue to improve as they are less
complex and, importantly, not under-trained.

In Figure 1(c) the profiles remain monotonic with the
error rates dropping as the model sizes increase. Note,
in this case the profiles do not cross each other. The
most complex model consistently has the lowest error
rates and the least complex, the greatest error rates. In
this case the amount of training data is large, sufficient
to utilise the complexity of the most complex model (la-
belled A+2) without encountering under-training,.

The three figures serve to illustrate that increasing
the amount of training data will not only allow larger
models, but also more complex ones, the benefit of which
is seen in the error rates. Note however, that in the
limits of large model size, quantity of data and minimum
complexity then such profiles must always cross, or at
least converge. For the optimum classifier under these
conditions is the nearest-neighbour [11] and thus the
least complex of all models is the best when the training
data is infinite!

Considering the hypothesis illustrated in Figure 1 the
current authors recently addressed the question of the
nature of a model with increasing data, albeit over a
constrained data range [12]. It is shown that increasing
the complexity of a model leads to a reduction in error
given a sufficient quantity of training data. This theme
is examined further below.

4 EXPERIMENTS

The data comes from 2000 speakers recorded over the
public switched telephone network [13]. One thousand
of the 2000 speakers are used to create a world model
and the other 1000 speakers are used for speaker model
training and testing. A total of about 8 hours of data is
used for the world model. Testing is text independent
using one digit utterance per speaker per test giving
1000 tests in total. The features are standard MFCC-
10 static and 10 first order regression. Tests are run on
GMM and SM M for comparison purposes.
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Figure 2: GMM DET curves for (approximately) 3, 10
and 30 seconds speaker training data.
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Figure 3: As for Figure 2 but for SMM.

The effect of the time sequence information intro-
duced by DTW is examined through three levels of
training: 3 seconds, 10 seconds and 30 seconds of pho-
netically rich sentences per speaker. The goal is to
demonstrate that with sufficient traing data the SM M
with its (albeit small) level of TSI can out perform the
standard GM M. A model size of 256 components is



used throughout based on preliminary results for this
configuration [12].
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Figure 4: Speaker verification % EER for GMM and
SMM against amount of speaker training data in sec-
onds.

Figure 2 shows GM M verification results. A detec-
tion error tradeoff (DET) curve is given for each of the
three levels of training. It is clear from the figure that
error rates drop with increasing training data. The dif-
ference between 3 seconds and 10 seconds training is
larger than the difference between 10 seconds and 30
seconds.

Figure 3 is similar to Figure 2. Here the verification
results are for SM M. The error rates drop with in-
creasing training data, but the rate of improvement is
faster than for GM M. For 3 seconds of training data
the GM M has a lower error rate than the SM M but at
10 seconds the SM M error rates are lower. This is more
clearly seen in Figure 4 which plots the equal error rates
for GMM and SM M as taken from the DET curves.

5 CONCLUSIONS

The SM M offers a variable step away from the atomic
level. The greater the step the more complex the model
becomes. The additional complexity, which is in the
form of time sequence information, takes advantage of
large amounts of speaker specific data when they are
available. This is ultimately shown in improved speaker
recognition results.

REFERENCES

[1] R. Stapert and J. S. Mason. A Segmental Mix-
ture Model for Speaker Recognition. In Proc. Fu-
rospeech, volume 4, pages 2509-2512, 2001.

[2] D. A. Reynolds and R. C. Rose. Robust Text-
Independent Speaker Identification Using Gaussian
Mixture Speaker Models. IEEE Trans. on Speech
and Audio Processing, 3(1):72 — 83, 1995.

[3] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn.
Speaker Verification using Adapted Gaussian Mix-

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

ture Models. Digital Signal Processing, 10:19-41,
2000.

S. Furui. Comparison of speaker recognition meth-
ods using static features and dynamic features.
IEEE Trans. on ASSP, 29:342-350, 1981.

K. Yu, J. Mason, and J. Oglesby. Speaker recog-
nition using hidden Markov models, dynamic time
warping and vector quantisation. Proc IEE vision,
image and signal processing, 142:313-318, 1995.

K. Yu. Text Dependency and Adaptation in Train-
ing Speaker Recognition Systems. Ph.D. Thesis,
University College Swansea, 1997.

F. K. Soong, A. E. Rosenberg, L. R. Rabiner, and
B. H. Juang. A vector quantization approach to
speaker recognition. In Proc. ICASSP, volume 1,
pages 387 — 390, March 1985.

G. Doddington. Speaker recognition based on idi-
olectal differences between speakers. In Proc. Eu-
rospeech, volume 4, pages 2521-2524, 2001.

R. Stapert. A segmental mixture model: max-
imising data usage with time sequence information.
PhD Thesis, University of Wales Swansea, March
2001.

H. Sakoe and S. Chiba. A Dynamic Programming
Approach to Continuous Speech Recognition. Sev-
enth ICA, page 20 C13, 1971.

A. L. Higgins, L. G. Bahler, and J. E. Porter.
Voice Identification Using Nearest-Neighbor Dis-
tance Measure. IEEFE, 2:375, 1995.

R. Stapert and J.S. Mason. Speaker recognition
and the acoustic speech space. In Odyssey Speaker
Recognition Workshop, Crete, pages 195 — 199,
June 2001.

R. J. Jones, J. S. D. Mason, R. O. Jones, L. Helliker,
and M. Pawlewski. SpeechDat Cymru: A large-
scale Welsh telephony database. In Proc. LREC
Workshop: Language Resources for FEuropean Mi-
nority Languages, 1998.



