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ABSTRACT

This paper addresses the problem of estimating the parameters of
a transient random process. In many applications, the absence of
model for the samples leads to the impossibility to use the classical
estimation theory tools. This paper develops a cost function for
the case where a parametric model for the second order spectral
characteristics exists. This cost function is build from the sta-
tistical properties of the signal discrete Fourier transform (DFT)
when the number of samples on the signal support tends to in-
finity. When the DFT bins are decorrelated, this criterion has
exactly the same form as the Whittle likelihood for the station-
ary signals case, the power spectrum being replaced by the energy
spectrum. Application of this estimation framework to visibility
estimation in stellar speckle interferometry is proposed.

1 INTRODUCTION

The estimation of the parameters of a transient signal
is a problem arising in many physical situations. If a
model of the measurements is available, it can be treated
using the classical estimation theory tools, [4]. However,
contrarily to the case of a stationary signal, the number
of samples is not relevant to study the asymptotic prop-
erties of the estimators of transient signal parameters.
Thus, as for a deterministic signal plus noise, this study
is generally carried out considering that a properly de-
fined signal-to-noise ratio tends to infinity, [4].

However in many situations a temporal model of the
signal is not available. In stellar interferometry for ex-
ample, it is only possible to obtain solely a parametric
model of the energy spectrum of the interferometric im-
age, [6]. In the stationary context, situations where only
a parametric model of the power spectrum is available,
or where a spectral model is more tractable than the
temporal model, also often occur, like for time series
with long range dependence, [8]. A very valuable tool
to analyze these type of processes is the Whittle’s like-
lihood, [9, 2], that gives an approximate expression of
the signal likelihood as a function of the periodogram
computed from the measured data and the theoretical
power spectrum. The use of this cost function has re-
cently received an increased interest [8, 3].

The objective of this communication is to derive a cost
function for the estimation of transient signals param-
eters that possesses the same structure as the Whittle
likelihood, i.e. built on the discrete Fourier transform

(DFT) of the data. The Whittle likelihood deeply re-
lies on the statistical properties of the DFT when the
number of samples is large, [3]. As mentioned above
this approach is irrelevant for a transient signal. More-
over the definition of a signal-to-noise ratio is not always
possible.

After a presentation of the notations used in this com-
munication, the third section will study the statistical
properties of the DFT of a transient signal when the
number of samples on the support of the signals tends
to infinity, i.e. when the sampling frequency tends to
infinity. It demonstrates that the DFT bins are asymp-
totically Gaussian distributed with a covariance func-
tion that depends on the two dimensional Fourier trans-
form of the signal autocorrelation. Departing from this
result, the fourth section derives a new cost function
for the parameter estimation problem. This cost func-
tion possesses the same structure as the Whittle likeli-
hood in the case where the DFT bins are asymptotically
decorrelated. Finally, the last section is devoted to the
application of this estimation scheme to the estimation
of the visibility in stellar speckle interferometry from
simulated data. These computer experiments prove the
superiority of the proposed method with respect to the
technique usually used.

2 PROBLEM STATEMENT AND GENERAL
FORMALISM

Let z(l) be a real valued continuous time transient ran-
dom signal defined without loss of generality on the
interval [0,T]. For simplicity, the development is re-
stricted herein to one-dimensional functions. It is as-
sumed that z(l) is a finite energy signal:

T
/ E[z(1)?]dI < oo. (1)
0

The “energy spectrum” of the nonstationary signal z(l)

can thus be defined as:
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S(f) = E[ /0 ' z(l)e %I d]
2)




where the “covariance” function ¢(7) is:

T—|7|
or) = /0 Efe()z(l + |)]d!. (3)

Note that under condition (1) the existence of ¢(7) is
verified. It is assumed that the “energy spectrum”, de-
noted S(f;0) in the sequel, can be parametrized by a
set of unknown parameters 8; to be estimated.

N samples of this continuous signal are acquired in
the interval [0,7] with a sampling interval T, = T/N:

zn = x(nTe), n=140,...,N —1}. 4)

Using the usual formalism [7], the DFT of z,, is defined
as:

Xi=T. Y wnexp(—j2kmnT.), 0< k< N. (5)

3 ASYMPTOTIC DISTRIBUTION OF THE
DFT

The purpose of this section is to derive the joint
asymptotic distribution (for N large) of the Xy, k =
{0,...,N — 1}. The analysis is split in two parts: first
the x,, are assumed independent and then statistical de-
pendence is introduced through a linear filtering of the
previous independent sequence.

Let kz,m () be the m-th order cumulant of x,. It is
assumed in the sequel that:

T
vm,/ o m(D)]dl < o (6)
0

The asymptotic joint Gaussian distribution of the
Xy is derived following the proof given in [1]
for the traditional stationary case. The cumulant
cum[Xg,, ..., Xy, ] can be written:

cum[Xkl, . ka]_

In this expression the k; can be negative in order to take
into account the case where the conjugated DFT X* ke
is considered. The derivation of an equivalent of this
cumulant for N large, as in [1] for the stationary case,
seems impossible to obtain in our case without further
information on the k., (n). For this reason the proof
will reduce to show the convergence toward 0 of this
cumulant in the case m > 2. This can be achieved using
the rough majoration:

leum[ X, , ..., X, ]| < (T

T.)% T, Z [Km (

When N tends to infinity, T.2 7" will tend to zero
for m > 2 whereas the second term will converge to

§ :sz n)e —j2m(37L, kq)nTe

fOT |kz,m (1)|dl recognizing in the expression above the
associated Riemann sum. Consequently, for N suffi-
ciently large the X, will be approximately jointly Gaus-
sian distributed.

The case where the measurements are dependent is
considered now. This derivation is obtained following
[7] where the z,, are modeled as the output of a linear
filter driven by an independent sequence e, that is of
course assumed nonstationary herein. The coefficients
of the filter are assumed to be dependent of the sampling
period T in order to prevent that as T, tends to zero, the
transfer function H(w) of the filter tends to H(0). The
impulse response of the filter is denoted h, .. Taking
into account the finite support of the considered signals,
Xy 18

n
Tn = Z hv,Teen—v (8)
v=0

Denoting for simplicity Wy = exp(—2j7kT,) and Hy, =
ZvN:_Ol hy, 1, W%, the DFT of z, becomes:

N-1 n
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v=0
= H,E; — Pk (9)

n=N-—v

where:

N-1

N-1
pr=VT. Z ho Wi Y edWr  (10)

n=N—v

= \/_ Z epWR Z he . Wi (11)

g=N-p

As a consequence, the mean and variance of py verify:

Elp] = fznel@wp(fzhw wh)

¢=N-p
(12)

var[py] < Te Nzlfce,z(p)< Nil hﬁ,:re) (13)

p=1 g=N-p

If the second sum in (12) and (13) tends to zero when
N tends to infinity, which is true if h, 7, W5 and h2 .
are abslolutely summable sequences, the dominated con-
vergence theorem proves that limy_,. E[px] = 0 and
limpy_, o0 var[pr] = 0. Consequently, equation (9) decom-
poses X}, in a sum of an asymptotically Gaussian term
and a term that tends to 0 in the mean square sense.
This implies that the DFT of the correlated signal z,,
follows an asymptotically jointly Gaussian law.



A straightforward computation of E[X}] and E[X} X ]
from (5) shows that:

Jim (VTLELX,] = m(k; 0) (14)
lim TLE[X,X;] = S(k,q; 0) (15)
where
T
m(f;0) = / Ele(1)] exp(—j2r f1)dl (16)

suwmo=[ ([ " B+ 7))

-T

exp{—j2n(fil — fo(I + T))}dl) dr
(17)

Consequently the asymptotic distribution of the vector
of the DFT components X = (v/T¢)(X1, ..., Xn)! is:

X ~ N (1(6),(8) — 1(0)(0)") (18)

where X(0)x,, = S(k,q¢;0), with k,q = {0,...,N — 1},
and u(0)r = m(k; 0).

This result suggests several remarks. First, noticing
that S(f,f;0) = S(f;0), the asymptotic variance of
(VT,) Xy equals S(k;0). This result can be compared
with the one obtained in the stationary case, where the
variance of the DFT asymptotically equals the power
spectrum, [1].

Then, if the signal is second order stationary
E[z(I)z(l + |7|)] can be substituted by c(r) in (3). If
we now consider a signal observed on [0, o], the limit
of (3) can be computed when T' — co. It is of course
important to take the precaution of dividing this quan-
tity by T before the computation of the limit, the signal
under scope becoming as T tends to oo a finite power
signal. In this case a simple computation shows that:

+o0 )
c(7')e_32”f1 Tdr.

lim_ 7S(/1, 256) =81 = 1) |

T—oo T —00
This leads to the classical result: if z,, is a stationary
signal, under mild assumptions the vector X is asymp-
totically Gaussian distributed and the X} are indepen-
dent with a variance that equals the power spectrum of
the signal.

Finally, if X} are asymptotically independent:

S(f1, f2;0) = m(f1;0)m(f2;0) for f1 # fo.  (19)
Then the asymptotic distribution of X is:
X ~ N (u(8), Diagl[{S(k; 8) — m(k; 8)*}io...N-1])-

This assumption presents a significant interest for the
establishment of the distribution of the periodogram de-
fined herein as I = (T%)| X|?. Indeed, since X is decor-
related, each component Iy of the periodogram follows
a x3 distribution and the joint distribution of vector I
is a product of x3 distributions.

4 COST FUNCTION FOR PARAMETERS
ESTIMATION

The purpose of this section is to derive a cost function
for the estimation of @ from the asymptotic distribution
of X . To preserve a general aspect of this study, the de-
pendence of the X, will be considered. In this case the
distribution of I is very complicated to derive and more-
over the correlation between the DFT bins suggests to
study a statistic that also includes their products. Let
us assume that M independent realizations of the signal
Z, are available and that the vector p(8) is known (oth-
erwise p(@) will be substituted by the empirical mean
obtained from the M DFT X(™) m = 1...M). Let

the covariance matrix C’M be defined as:

M
Car = 22 (X — w(@)(X™ — w(@)". (20)

When N is large, the asymptotic distribution of the
X (™) implies that Cys follows a complex Wishart dis-
tribution of dimension N and degrees of freedom M [1]:

. 1
Cur ~ W5 (M, Hz(a)).

The log-likelihood of c v will be used as a cost func-
tion for the estimation of 8. If the terms that are not

function of @ are suppressed the expression for this cost
function reduces to:

c(8) = ~log(I=(@))) — tr (T(0) 'Cur)  (21)

C(0) takes a simplified form when the X}, are indepen-
dent, since 3(0) is a diagonal matrix with 3(0)s, =

S(k; @), and thus relation (21) becomes:

— -~ q( 1 1 Z%ﬂ I(m)
co) = - kZ:O llog{S(k,B)} + MW] (22)

This expression of the cost function has exactly the same
structure as the approximately Gaussian log-likelihood
introduced by P. Whittle [9, 2] for the stationary pro-
cesses where the power spectrum has been replaced by

S(k; 0).

5 APPLICATION TO STELLAR SPECKLE
INTERFEROMETRY

The cost function (22) has been applied to the problem
of visibility estimation in stellar speckle interferometry.

When a stellar source is observed at the focus of a
large telescope the phase of the wave coming from the
object is disturbed by the atmospheric turbulence, so
the image z(l) must be considered as a random function.
The technique of stellar speckle interferometry proposed
by Labeyrie [5], based on the computation of the second
order statistics S(f), enables to freeze the turbulence
during the measurement.



The acquired image equals the object convolved with
the optical transfer function characterizing both the
telescope and the atmospheric turbulence. The com-
putation of the energy spectrum of this image gives, [6]:

5(£:0) =100 B(1) + 3 (100)°T,(1)

| 10G0)P

PO (T,(F + fo) + Tulf - fo))) (23)

O(fo) is the Fourier Transform of the object at the
spatial frequency fo corresponding to the distance be-
tween the two telescopes of the interferometer. To(f) is
the optical transfer function of the telescope (normal-
ized autocorrelation of one telescope of aperture area
s). B(f) = By (f)To(f) where By(f), the second-order
moment of the wavefront, characterizes the effect of the
turbulence on the incident wave. o, = [ B} (f)df is the
coherence area of the wavefront.

The energy spectrum S(f;8) is then decomposed in
two low frequency contributions: |O(0)|>B?(f) called
the seeing peak and |0(0)|*(0./2s)T,(f) called the
speckle peak, and one high frequency contribution called
the fringes peaks: |O(fo)|?(0¢/48)To(f % fo)-

8 = [|O(0)%,|0O(fo)|?]! is the vector parameter to
estimate in order to compute the squared fringes vis-
ibility V2(fo) = 0(fo)l2/|0(O)2. V(fo) is generally
estimated by carrying out the ratio between the esti-
mated fringes peak energy and the speckle peak energy
computed from locally averaged periodogram bins. This
estimator will be denoted as “energy ratio” in the sequel.
This simulation proposes to compare this estimator with
the estimator obtained maximizing (22).

The interferometric images have been generated us-
ing two circular telescopes with a diameter of 5m sep-
arated by a 15m baseline. The atmospheric turbulence
is modelled by By(f) = exp(—3.44(\|f|/r0)?/?) with
ro = 2c¢m. The simulations consider an unresolved
source (delta function), i.e. @ = [1,1]*. The values of 8
have been estimated using series of M = 50 images each
one with size N = 256 x 256. An example of the shape
of the cost function C(8) is given in Fig. 1.

For each serie the visibility has been estimated as

—— —

V2(fo) = |O(f0)|2/|0(0)|2. 40 values of these parame-
ters have been estimated from independent series of im-
age realizations using the proposed method and the “en-
ergy ratio” method. The minimization of C(8) has been
performed using the Matlab routine fminsearch initial-
ized at {0.5,0.5}. The estimated bias and the mean
squared error (MSE) are given in table 1. These results
clearly prove the efficiency of the parametric method
proposed in this paper.

6 CONCLUSION

This paper studied the problem of parametric estima-
tion of transient signals based on energy spectrum mod-
els. A criterion similar to the Whittle likelihood for the
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Figure 1: —C(6) as a function of ; and 6. The thrue
value is {1,1}.

FEstimated bias

——— —

00)]2  10(fo)>  C(fo)
Max. of C(0) | 34.10~* 50.10~%* 18.1071
Energy ratio | 62.107% —63.107% 12.1072

FEstimated MSE variation

—— o —

0O [0(fo)?  C(fo)
Max. of C(0) | 13.10° 23.10=°  35.107°
Energy ratio | 22.1072  28.1072  14.1073

Table 1: Bias and MSE for the proposed method and
“energy ratio” method.

stationary case has been derived. The interest of the
method have been validated by computer simulations.
The extension of this approach to the computation of
lower bounds on the estimated parameters variance is
currently under investigation.
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