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ABSTRACT

This paper deals with the coherence function in order to
study relations between channels, in the context of auditory
evoked potentials, and more specifically with the statistical
analysis of a coherence estimator applied to signals having
periodicity. In practice, a stimulus is periodically sent and a
sufficient number of individual responses are recorded to
increase the signal-to-noise ratio. In this way, a coherence
estimator can be defined. Under some hypotheses, we get a
simplified version of this quantity and we study its
distribution and its mean. Simulations illustrate theoretical
results. Then, we estimate the mean value of the coherence
computed on a given number of responses. We derive the
bias versus the theoretical coherence and the number of
individual responses.

1. INTRODUCTION
In biomedical engineering, the understanding of certain

cerebral structures goes through the analysis of responses,
called evoked potentials, to auditory, visual or somesthetic
stimuli. In the present work, we are concerned by audition,
the aim being a better knowledge of the auditory cortex
through the study of auditory evoked potentials (AEPs)
recorded either on the surface of the scalp or using intra-
cerebral electrodes (in the case of stereoelectroencephalo-
graphy (SEEG) where patients are under a surgical
investigation). We are interested in characterizing the
recorded signals according to the localization of the
recording and to the type of stimulus. Now, undesirable
signals, such as electroencephalogram (EEG) or other
physiological signals, can be superimposed to the useful
signal induced by the external stimulus. In this way, this
useful signal is embedded in noise and it becomes essential
to emit a great number of identical stimuli and add the
ensemble of synchronized individual responses to get an
averaged evoked potential whose signal-to-noise ratio is
actually increased compared to that of the individual

responses. This paper is aimed at analyzing a linear relation
between noisy signals using individual responses. This
relation is recalled in section 2 and section 3 is devoted to
the presentation of the asymptotic estimators. Then, a
statistical analysis on the real estimator is conducted in
section 4 before giving some concluding remarks.

2. METHOD AND MATERIAL
If the analysis of averaged evoked potentials provides the

physiologist with some information on the function of
particular structures, the study of relationships between
different structures can be viewed as a valuable help.
Parametric and non-parametric tools allow to determine the
connection degree between different explored channels and
to detect some activity changes.

In this paper, our attention is focused on the coherence
function which is a frequency-dependent function we recall
next. Let { }ix , ,,...,2,1 Mi =  be M temporal signals recorded
on M  channels. If these signals are jointly stationary, the
ordinary coherence between two signals ix  and ,, jix j ≠
measures their linear relation degree and is defined as [1]:
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between ix  and jx , at the frequency f , respectively.

In the standard case of random signals (without any
repetitive character), the practical computation of the
coherence is performed on a temporal length in relation with
the signals non-stationarity and each spectral density is
obtained by averaging frequential informations on a given
number of adjacent or overlapped segments.

In the analysis of AEPs, the same stimulus is emitted L
times and the evoked responses are assimilated to noisy
repetitive signals. On each channel i, we receive L individual
responses to this stimulus, )(, nxi l , L,...,1=� , where )(, nxi l



represents the time series sampled at the sampling rate ef .
Each response is composed of N samples. In the following,
we only consider the coherence between two signals )(1 nx
and )(2 nx , and the estimated coherence, noted )(ˆ fρ , is
derived from the L responses by:
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where )(, fX i l
 is the N-point Fourier transform of the � th

response on channel i, and the symbol * denotes the
conjugate operator. More generally, the relationships may
vary on the length of the responses, which forces to estimate
the coherence at different times on the responses, and the
Fourier transforms are computed on a part of the response. In
other contexts such as EEG, no stimulus is emitted and we
can compute in the same way the coherence from two
observations using (2) where L becomes the number of
blocks used in the estimation.

3. ASYMPTOTIC ESTIMATORS
In the following, we consider two cases : i) no stimulus is

sent, ii) the observations are responses to a stimulus (AEP
context).

Let )(, nxi l
, 2,1=i , be the observation on channel i

defined as )()()( ,, ndnsnx ii lll
+= , where )(ns

l
 represents

the useful signal in the � th response or the � th block, which
is assumed identical on both channels and )(, ndi l

 the
disturbing noise. The signals )(ns

l
, )(,1 nd

l
 and )(,2 nd

l

are decorrelated. In the particular case of AEPs, the useful
part )(ns

l
 of the � th response to a stimulus is always the

same and noted )(ns . The study of the coherence estimated
according to equation 2 is quite difficult but it can be
simplified when the number of blocks increases: the
correlation between signal and noise as well as the
correlation between noises tend in the mean to zero. In the
following, the asymptotic estimators in cases i) and ii) are
considered.

3.1 Non repetitive signals

If )(ns
l

, )(,1 nd
l

, )(,2 nd
l

 are stationary gaussian noises
with zero mean value, the asymptotic coherence is defined at
each frequency as
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considering that the noise power spectral densities are
identical on both channels ( )()()(

2211
fff dddddd γγγ == ).

Given )(/)( ffa ddss γγ=  ( a  is the signal-to-noise ratio at a

given frequency f  but, in the following, the variable f  is

omitted for clarity reasons),
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3.2 Repetitive signals

If we consider the same hypotheses as in section 3.1 and
take the repetitive character of the useful signal into account,
( )fρ̂ is asymptotically close to
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where )( fS  represents the spectrum of the useful signal and

)(, fDi l
 the spectrum of the noise present on channel i. If

noises are of same power on both channels, the quantities
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, are close to )( fddγ  for a large

L, and we obtain the quantity
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This coherence is a random variable, due to the random
character of )( fS .

Now, we are interested in the theoretical distribution of
)(ˆ frρ  when the useful signal is composed of decorrelated

samples. The term )( fS  may be written
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where we assume that ,N...,,ns(n), 10 −=  is a series of N

independent random variables of normal law ( )2,0 sN σ . The

couple ( )( ) ( )( )( )fSmIfSeR ,  follows a gaussian law whose

covariance matrix is 
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For frequencies Npf /= , { },1,...,1,0 −∈ Np corresponding

to spectral analysis by Discrete Fourier Transform, the term
γ  is zero. Thus, the couple ( )( ) ( )( )( )fSImfSeR ,  is a couple

of independent gaussian variables. The law of ( )2
fS  is that

of a random variable 22 )1( VU αα −+  where U and V are

independent variables of normal law ( )2,0 sN σ . Two cases

have to be distinguished:



i) if 0=f  or 2/eff = , 1=α ,

ii) if 0≠f  and 2/eff ≠ , 2/1=α .

In this way, if 0≠f  and 2/eff ≠ , 
2

)( fS  is of the

form 2/)( 22 VU + , with U and V defined previously. It is a

random variable of exponential law and one can easily show
that )(ˆ frρ  (given by equation 6) follows a law whose

density is
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where [ [1,01  is the unit function on the interval [ [1,0 .

In case f = 0 or 2/eff = , 1=α  and ( )2
fS  is the square

of a gaussian variable and one can show that the density of
)(ˆ frρ  may be written
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So, given the distribution of )(ˆ frρ , we can deduce by
numerical computation its mean value for a given frequency.

3.3 Comparison

Figure 1 exhibits on the one hand the theoretical value of
the coherence for random non repetitive signals (Fig. 1.a),
and on the other hand that same value in the case of
repetitive signals for two frequencies ( 0=f  (Fig. 1.b),

0≠f  and 2/eff ≠  (Fig. 1.c)), versus the signal-to-noise
ratio a.

FIG. 1. Theoretical coherence
(a) non repetitive signals, (b) and (c) repetitive signals

((b) 0=f , (c) 0≠f  and 2/eff ≠ )

For the same signal-to-noise ratio, the coherence
computed on repetitive signals is lower than that computed
on non repetitive signals. In this second configuration, the
coherence is not frequency-dependent while, in the first case,
the coherence is lower for the two extreme frequencies

0=f  and .2/eff =

4. STATISTICAL ANALYSIS
Until now, only studies on random non repetitive signals

can be found in the literature [2]. To judge the performance
of our estimator on signals having periodic components, a
statistical analysis is conducted. First of all, our aim was to
compare simulation and theoretical results related to the
expression 6 of )(ˆ frρ , and compare them to values
obtained using equation 2. Signals s, 

l,1d , 
l,2d  are white

gaussian noises and the short time Fourier transform is 256-
point long. The theoretical study indicates that we have to
distinguish frequencies 0=f  and 2/eff =  from the others.
First simulations described in [3] show that the histogram of
the coherence )(ˆ frρ  is comparable to the theoretical
distribution of the coherence given by equations 9 and 10.
Figures 2 and 3 represent respectively for 0=f  (or

2/eff = ) and for 2/,0 efff ≠≠  the histogram of the
coherence )(ˆ fρ  as well as the theoretical distribution of the
coherence )(ˆ frρ , for 100=L  and a = 1.

FIG. 2. Coherence distribution, ,1=a  0=f
histogram of the coherence )(ˆ fρ , 100=L  (dotted line)

theoretical distribution of the coherence )(ˆ frρ
according to (10) (solid line)

FIG. 3. Coherence distribution, ,1=a  0≠f  and 2/eff ≠
histogram of the coherence )(ˆ fρ , 100=L  (dotted line)

theoretical distribution of the coherence )(ˆ frρ
according to (9) (solid line)
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To complete this study, we evaluate the bias of the
estimator according to the number of responses L (Figures 4
and 5). It is obvious that the bias is all the more reduced as
the number of responses is great. Nevertheless, in some
applications, the value of L is limited and the knowledge of
the bias may be introduced in a bias correcting algorithm to
approach the true value if necessary.

Now, if we compare the bias obtained for 0=f  and
0≠f (and 2/eff ≠ ), we observe that the curves are

comparable whatever the number of responses is.

FIG. 4. Bias, 0≠f  and 2/eff ≠
(a) 20=L , (b) 100=L

FIG. 5. Bias, 0=f , (a) 20=L , (b) 100=L

The analysis of the bias reported in [2] on non repetitive
signals shows that the bias is inversely proportional to the
number of blocks used in the coherence estimation. The same
conclusion holds with repetitive signals. Now, we consider
the situation where L equals 20, 0≠f  and 2/eff ≠ , to
compare the histograms. Figure 6 exhibits the theoretical
coherence according to (9) as well as the histogram of )(ˆ fρ
for 20=L . Compared to Figure 3, it is obvious that the
estimated coherence deviates from the theoretical value. We
can note that the distribution of )(ˆ fρ  decreases to zero for

low values of coherence and there is a shift towards higher
values which makes the bias increase.

FIG. 6. Coherence distribution, ,1=a  0≠f  and 2/eff ≠
histogram of the coherence )(ˆ fρ , 20=L  (dotted line)

theoretical distribution of the coherence )(ˆ frρ
according to (9) (solid line)

5. CONCLUSION
In this paper, we discussed the problem of the coherence

estimation when computed from signals whose useful
component is repetitive and composed of decorrelated
samples, and we showed the influence of this periodicity.
The results must be taken into consideration in the
interpretation of relations between signals recorded on
different channels such as auditory evoked potentials. This
study has to be extended to the case where the useful
repetitive signal is constituted of correlated samples.
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