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ABSTRACT

This paper addresses the problem of robust classification
of mixture densities by using an entropic-graph informa-
tion divergence estimate; this provides a means to ro-
bustly estimate I-divergence without using any explicit
probability density function estimation procedure. We
previously applied entropic-graph methods to clustering
and classification for mixture densities having uniform
contamination density. This paper describes an exten-
sion of our previous methods to mixture densities with
arbitrary contamination density. Under the assumption
that at least one of the pdf’s can be estimated from a
training sample, a binary hypothesis test is proposed
for testing whether an independent target sample has
identical distribution as the training sample. This test
is based on thresholding an entropic-graph I-divergence
estimate constructed from the Minimal Spanning Tree
(MST) spanning the target sample on a transformed
data space.

1 Introduction

The problem of estimating the I-divergence arises in a
very large class of density classification problems for
clustering and pattern recognition [1, 2]. In these prob-
lems one applies a threshold test to an estimate of
I,(f,g) in order to decide whether f is equal to g. I-
divergence estimation also arises in image registration
where the I-divergence can be directly related to mu-
tual information between two images f and g [3, 4]. For
an overview of entropy and I-divergence estimation ap-
plications the reader can refer to [5] and [1]. In this
paper we present a methodology for robust estimation
of I,(f, g) for unknown f and g where g is an arbitrary
dominating density. It is assumed that an independent
identically distributed (i.i.d.) training sample from g is
available. The proposed divergence estimator performs
a non-linear transformation on the data sample X,,, pro-
ducing a transformed data sample },,, and constructs a
graph, called the k-minimal spanning tree (k-MST), on
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a minimal k-point subset Y, i of the transformed data.
Here k plays the same role as the parameter « in the
a-trimmed mean estimator of the ensemble mean of a
sample: when there are outliers k£ can be selected to
ensure outlier resistance. The log length of the k-MST
gives an estimator of the Rényi information divergence.

As contrasted with density plug-in techniques, graph-
based entropy estimators enjoy the following properties:
they can have faster asymptotic convergence rates, es-
pecially for non-smooth densities and for low dimen-
sional feature spaces; they completely bypass the com-
plication of choosing and fine tuning parameters such
as histogram bin size, density kernel width, complex-
ity, and adaptation speed; the a parameter in the a-
entropy function is varied by varying the interpoint dis-
tance measure used to compute the weight of the min-
imal graph. On the other hand, the need for combina-
torial optimization is a bottleneck for large numbers of
feature samples. This has motivated the development of
greedy minimal graph approximations that preserve ad-
vantages such as robustness against outliers [6, 7]. This
paper presents an extension of [7] to the case of unknown
outlier densities.

After recalling basic definitions and properties of min-
imal graphs in Section 2, the I-divergence estimation
problem is developed in Section 3. Finally, an appli-
cation of robust classification and mixture detection is
presented, and ROC curves are presented which illus-
trate the effectiveness of our approach.

2 MST and k-MST based entropy estimators

Let X, = {z1,%2,...,%,} denote a sample of i.i.d. data
points in R? having unknown Lebesgue multivariate
density f(z;) supported on [0, 1]%.

A spanning tree 7 through the sample X, is a con-
nected acyclic graph which passes through all the n
points {z;}; in the sample. T is specified by an ordered
list of edge (Euclidean) lengths e;; connecting certain
pairs (z;,;), © # j, along with a list of edge adjacency
relations. The power weighted length of the tree 7T is the
sum of all edge lengths raised to a power v € (0,d), de-
noted by: ) . |e|”. The minimal spanning tree (MST)



is the tree which has the minimal length
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For any subset X,y of k points in &, define Tx, , the
k-point MST which spans X, ;. The k-MST is defined
as that k-point MST which has minimum length. Thus
the k-MST spans a subset X, , defined by

L(X5 k)

The planar k-MST problem was shown to be NP-
complete in [8]. Ravi et al proposed a greedy polynomial
time algorithm for the planar k-MST problem with ap-
proximation ratio O(k%).

Let v € (0,1) be defined by v = (d — 7)/d and define
the statistic

= r(%lrkl L(X, 1)

H,( ;:,k) =

Lo (LX) B (1)

where 3, 4 is a constant equal to the Rényi entropy of

parameter v
— ln/f"(.z')dm (2)

H,(f) =

for f(x) equals the uniform density on [0, 1]¢. In [9] Hero
and Michel presented a d-dimensional extension of the
planar k-MST approximation of Ravi et al, called the
greedy k-MST approximation. In that paper we proved
that when k = an, a € [0,1], and the length L(X} ;)
of this approximation is substituted into (1) one obtains
a strongly consistent and robust estimator of the Rényi
entropy (2):

I_:I-X* 1/
0o i o [ @i (o)

where the minimization is performed over all d-
dimensional Borel subsets of [0,1]¢ having probability

= [, f(z)dz > a. This result was used in [10] to
spemfy robust estlmators of Rényi entropy which per-
form outlier rejection for the case that f is a mixture
density of the form

f=QQ—-¢e)g+eh (3)

where e € [01], g is the uniform probability density func-
tion (pdf) over [0, 1]¢, f, h are pdf’s.

3 Extension: I-Divergence Estimation

Let g(z) be a reference density on R? which dominates
the density f(z) of a sample point z = [z!,... 24T
in the sense that for all z such that g(xz) = 0 we have
f(xz) = 0. A related quantity is the a-divergence be-
tween two feature densities f and g of order a € (0,1)

11, 2, 1]
i / (g0 ()dz (4)

Da(fllg) =

D, (f|lg) is a measure of similarity or closeness of f and
g in the sense that D, (f]|g) > 0 with equality iff f =g
almost everywhere (a.e.). When oo — 1 the a-divergence
converges to the Kullback-Leibler divergence

9(2)

KL(flg) = [ o) % 2a:

On the other hand, D1 (f||g) is the Hellinger affinity
2
between f and g [12].

For any z such that g(z) > 0 let g(z) have the product
representation

9(z) = g(z')g(z®|z") ... g

where g(z*|z*~!,... z!) denotes the conditional den-
sity associated with g(x) of the k-th component. In
what follows we will ignore the set {z : g(z) = 0} since,
as f(xz) = 0 over this set, it has probability zero. Now

(2?1, ... 2t

consider generating the vector y = [y,...,y4" € R?
by the following vector transformation
y' = G() (5)
y* = G(®|z')
y¢ = G2, 2t
where
$k
G(xk|a:k*1,...,xl):/ g(@F|z* 1, 2t)dah
—oo

is the cumulative conditional distribution of the k-th
component, which is monotone increasing except on the
zero probability set {x : g(z) = 0}. Thus, except for this
probability zero set, the conditional distribution has an
inverse

o = GTl(yF|leR, 2t
= Gyl
and it can be shown (via the standard Jacobian formula
for transformation of variables) that the induced joint
density, h(y), of the vector y takes the form:

FGE Y, G ™ )
9(G (YY), - Gy Yy - 5 y1)

Let L(Y;, ;) denote the length of the greedy approx-
imation to the k-MST constructed on the transformed
random variables y, where )" K 18 the set of k points
spanned by this k-MST approx1mat1on Then, from the
results of [9] cited in the previous section, we know that

h(y) =

(6)

B30 i [ Wy @s) ()

Making the inverse transformation y — x specified by
(5) in the above integral, noting that, by the Jacobian
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Figure 1: Top left: a sample from a separable triangular
p.d.f. over the unit square. Top right: a vector field indicat-
ing the action of the exact separable inverse transformation
of coordinates on each sample point in Top right. Bottom
left: same sample points as in Top left after applying trans-
formation indicated in Top right. Bottom right same as Bot-
tom left except that estimated transformation of coordinates
was implemented using k-nearest-neighbor density estimators
for each of the marginals.

formula, dy = g(x)dz, and using the expression (6) for
h, it easy to see that the integral in the right hand side
of (7) is equivalent to the Rényi information divergence
of f(x) with respect to g(z)

1iyln/h"(y)dy = 1iyln/ (%)"g(w)dm_

Hence we have established that H, (y;; ) is a strongly
consistent estimator of the Rényi information divergence
above. Thus the length L(Y,) of the MST constructed
on the transformed random variables ),, can be used
in place of the length L(X,) in (1) to give a consistent
estimate of the divergence (4) of f relative to a known
reference g:

Da(fllg) = 1=

-

nL(Y,)/n® —Inpy.q4] - (8)

An example of this procedure is shown in Figure 1 for
a 2D separable triangular reference density g over [0, 1]
which in this case equals the actual marginal density
f of the observed i.i.d. points X,,. Thus for this ex-
ample the true divergence is zero. By triangular den-
sity we mean: g(z) = (2 — 4|z — 1|)(2 — 4]z2 — 1)),
x = (21,22). A random sample of n = 100 points was
generated from g. The uniformizing transformation in
this case is separable too, with each component transfor-
mation equal to the marginal cumulative density func-
tion G(z) = [;(2 — 4]z — 4|)dz of the 1D triangular
density.

We investigated both exact uniformizing transforma-
tions and approximated transformations formed from es-
timates of the one dimensional component density func-
tions. The transformed sample is essentially uniform
both for the exact and the estimated transformations.
Therefore, as n — oo it is expected that L(),)/n* will
converge to 3,4 and the estimated divergence (8) will
converge to zero as desired.

The results of [9] can thus be easily be extended to
classification against any arbitrary distribution g, and
not just the uniform distribution studied in [10]. In
many practical problems occasional spurrious feature
vectors may appear due to noise, false alarms, or small
unimportant shifts and deformations during the image
formation process. In such situations we are interested
in robust entropy or divergence estimators which are
resistant to these spurrious outliers. This problem is
related to robust clustering for which it is common to
adopt a finite mixture model to capture the incidence of
points arising from different distributions [13].

4 Aplication: Robust clustering and classifica-
tion

Here we apply the k&-MST to robustly cluster and clas-
sify a triangular vs. uniform density. 256 samples were
simulated from a uniform-triangular mixture density 3
where g = 1 is a uniform density and h is the sepa-
rable triangular shaped product density, introduced in
the previous section, both supported on the unit square.
Note that, unlike in the usual situation, the “outlier”
distribution h has lower entropy than the target dis-
tribution g which makes the problem of clustering the
realizations from g more challenging [14].

The a-divergence D, (f, h) was estimated by H, (Vn)
for a = 1 (v = 1) using the MST estimator. Y, was ob-
tained by applying the “uniformizing” coordinate trans-
formation to X, derived in the preceding section. In
this sequence of experiments the estimate Ho(),) was
thresholded to decide between the hypotheses Hy : € =0
vs. H; : € # 0. Simulations were performed to generate
the receiver operating characteristic (ROC) curves indi-
cated in Figures 2 for various values of ¢, over the range
e € {0.1,0.3,0.5,0.7,0.9}.

The first plot (upper-left) gives the ROC curve ob-
tained under the assumption that the analytical expres-
sion of the density function h is known, and is namely a
triangular separable 2D distribution over [0,1]?. Thus,
the ”uniformization” applied on X}, is exact. The other
ROC curves were obtained for a priori unknown -but
separable- distribution h, and with the hypothesis that
a set of realizations with h alone is available (i.e. one
can observe the case e = 1). For each experiment a set
of 100 tests is performed, and an observation of a set of
N = 256 realizations of a process with pdf A is used to
construct the uniformization function from its observed
cdf. Note that, as expected, in each case the detection
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Figure 2: TOP : ROC curves for known reference distribu-
tion (top left) or estimated reference distribution (Top right)
-see text-

N=256, ¢ 0.9, h=(green.unif), g=(red.triang) N=256, £ =0.9, h=(green,unif), g=(red.triang)
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Figure 3: Scatterplot of of a uniform-triangular mizture af-
ter applying the uniformizing coordinate transformation. La-
bels ‘0’ and '+’ mark the transformed realizations from the
uniform and triangular densities, respectively. Superimposed
is the k-MST implemented on the transformed scatterplot Yy,
with k = 230; Right: same as left except displayed in the
original data domain.

performance improves as the difference, indexed by e,
between the assumed Hy and H; densities increases.

In a second sequence of experiments we selected two
realizations of the triangular-uniform mixture model for
the value ¢ = 0.1. The k-MST procedure (kK = 90)
was implemented on ), as a robust algorithm to clus-
ter data points from the uniform density. The cluster
of points are defined as those points connected by the
k-MST graph. The k-MST length can thus be used as a
robust estimate H, (Vn,k) of the uncontaminated diver-
gence D4 (g, h). Figure 3 illustrates the effectiveness of
this clustering method: within the cluster defined by the
vertices of the k-MST the proportion of contaminating
points from A has dropped from the original 10% to less
than 4%.

5 Conclusion

A new approach to the I-divergence based mixture de-
tection problem has been proposed. One of its most
attractive feature is that it does not require any den-
sity estimates, at least when a training sample of the
contamination density is available and when this mul-

tivariate density has independant components. For the
case of more general non-separable contamination densi-
ties we are currently investigating a whitening procedure
which is applied on the training data as a preprocessing
step.
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