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ABSTRACT

In this work, recently derived theoretical approximations for high
rate vector quantization (VQ) are reformulated to cleanly separate
the effects of the VQ codevector density and the local Voronoi re-
gion shapes on overall VQ performance. Numerical evaluation of
the resulting theoretical expressions is performed, which allows
comparison of the relative importance of codevector density and
Voronoi region shapes for a variety of different conditions. In par-
ticular, results are presented which compare root mean squared
(RMS) vs. mean squared (MS) optimal quantizers, full band vs.
partial band log spectral distortion (LSD) quantizers, LPC vs. K
vs. LAR vs. ASIN vs. LSP vs. cepstral coefficients, 0th order vs.
1st order recursion, and optimal vs. weighted mean squared error
(WMSE) vs. mean squared error (MSE) quantizers.

1. INTRODUCTION

Within the last several years, high rate vector quantization theory
has been applied to the fixed rate LPC VQ problem. In [1], high
rate expressions for MS full band LSD of various LPC parametric
representations and for optimal, WMSE, and MSE-based quantiz-
ers were derived. In [2, 3], high rate expressions were derived with
more rigor, extended (in the optimal case) for arbitrary powers of
the desired distortion measure, and extended to include variable
rate quantizers. In [4], the high rate expressions for optimal recur-
sive quantization were derived.

In [1], numerical evaluation of the high rate expressions was
limited due to the lack of estimation procedures for the high di-
mensional LPC vector probability density function. In [4, 5, 6, 7],
density estimation procedures utilizing mixtures of Gaussian com-
ponents were used to estimate the density function of the LPC vec-
tor source. In these techniques, the density function is represented
as

f(a) =
∑
i

αiN(µi,Σi)

whereN(µ,Σ) is a Gaussian density function with meanµ and
covariance matrixΣ, and whereαi are weighting factors which
sum to 1. Given a database of input training vectors, the fac-
tors αi, µi and Σi can be iteratively chosen to maximize the
log-likelihood of the training database using the expectation max-
imization (EM) algorithm. In [6], the knowledge of the bounded
region of support of the stable LPC vectors was included in the EM
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algorithm to improve the selection of the parameters. These den-
sity functions allowed evaluations of the theoretical expressions
for high rate performance. In [4], numerical expressions for the
theoretical results for several cases were presented, in particular
for partial band, RMS LSD as applied to quantization of cepstral
coefficients. The existence of high rate expressions and approx-
imate density functions now allows the numerical evaluation of
high rate VQ performance for many different cases, allowing some
approximate comparisons of different quantization techniques.

This paper presents a reformulation of the high rate theory of
vector quantization which cleanly separates the effects of the VQ
codevector density and the local Voronoi region shapes on over-
all VQ performance. Numerical evaluation of these expressions
is performed, which allows comparison of the relative importance
of codevector density and Voronoi region shapes for a variety of
different conditions. In particular, the results allow for approx-
imate comparisons of different quantization techniques utilizing
root-mean-squared (RMS) vs. mean-squared (MS) LSD, full band
vs. partial band log-spectral-distortion LSD, LPC vs. K vs. LAR
vs. ASIN vs. LSP vs. cepstral coefficients, 0th order vs. 1st or-
der recursion, optimal vs. weighted-mean-squared-error (WMSE)
vs. mean-squared-error (MSE) quantizers, and different schemes
which may result in optimal or suboptimal VQ densities and/or
optimal or suboptimal VQ Voronoi region shapes.

2. REFORMULATED HIGH RATE VQ THEORY

This section provides a reformulation of high rate results for high
rate VQ quantization schemes, separating the effects of VQ code-
vector density and local Voronoi region shapes. Original deriva-
tions of the various results can be found in [1, 2, 3, 4, 5, 6].

Let x be ann dimensional random vector inD ⊂ Rn with
probability density functionf(x) = f(x1, x2, ..., xn). A B bit
fixed rate vector quantizer is composed of a quantization function
Q(x) which mapsx to an output vector̄x in a set of2B output
vectors inX̄ = {x̄1, ..., x̄2B}. LetS(x̄i) be defined by

S(x̄i) = {x ∈ D|Q(x) = x̄i},

i.e. S(x̄i) is the set of all points quantized tōxi, also known as
the “Voronoi region” forx̄i. For most distortion measures and
quantization schemes of interest,S(x̄i) can be separated into a
“volume” component and a “shape” component, as

S(x̄i) =

{
x ∈ D | hx̄i

(
x− x̄i
V (x̄i)1/n

)
< 1

}
,



whereV (x̄i) is the volume of the Voronoi region, given byV (x̄i) =∫
x∈S(x̄i)

dx, and thus
∫
x|hx̄i (x)<1

dx = 1. In this way, the par-

ticular Voronoi region can be expressed completely by the volume
V (x̄i) and the functionhx̄i(x) which defines the local shape of
the Voronoi region.

In high rate theory, Voronoi regions are often approximated by
hyper-ellipsoids, which are defined using the above terminology
as

hell−M (x) =
xTMx

(κn)−2/n|M |1/n
,

whereκn is the volume of ann dim sphere of radius 1. Spherical

regions are defined byhell−I (x).
The goal of a quantizer design is to minimize the expected

distortion introduced by quantization, as measured by some error
measureE defined by

Ed(Q) =
(
Ex
(
dr/2(x, Q(x))

))1/r

, (1)

The distortion measured commonly used for LPC quantization in
speech coding is the LSD measure, given by

LSD(a, ā) =
β

γπ

∫ γπ

0

(ln(|A(ω)|2)− ln(|Ā(ω)|2))2dω,

whereβ = (10/ ln(10))2,A(ω) = 1−
∑v
i=1 aie

jωi, andĀ(ω) =

1−
∑v
i=1 āie

jωi.Some work on LPC VQ utilizes “full-band” LSD
with γ = 1 whereas other work focuses on “partial-band” LSD
with γ < 1. In particular,γ = 3/4, averaging over only the first
3 kHz of the spectrum, is often used. Also, some work focuses on
“MS” LSD with r = 2, whereas other work focuses on “RMS”
LSD with r = 1.

In the aforementioned references, it is shown that in the limit
as the two vectors approach each other, most distortion functions
of interest approach the following limit:

d(x, x̄)→ 1

2
(x− x̄)TD(x̄)(x− x̄)

whereD(x̄) is ann by n dimensional “sensitivity” matrix with
j, kth element defined by

Dj,k(x̄) =
∂2d(x, x̄)

∂xj∂xk

∣∣∣∣
x=x̄

.

The diagonal elements of the sensitivity matrix are the scalar sen-
sitivities which represent the degree to which quantization error in
a particular scalar parameter increases the overall distortion.

In the references, it is shown that, at high rates, the expression
for the expected distortion approaches

Erd(Q)→ 1

2r/2

∑
x̄i∈

¯X

f(x̄i)Ir
[
hx̄i ,D(x̄i)

]
V
n+r
n (x̄i)

with Ir is the local expected distortion of a particular, volume-
normalized Voronoi region, defined to be

Ir [h,D] =

∫
y:h(y)<1

(
yTDy

)r/2
dy.

Ir is a function of only the shape of the local Voronoi regions and
is not a function of the volume of the local regions.

Let λ(x) be the relative density of codevectors, defined as
λ(x) = limB→∞1/(2BV (x)) which integrates to 1. Then as
B →∞,

Erd(Q)→ 2−Br/n

2r/2

∫
f(x)Ir [hx,D(x)]λ

−r
n (x)dx.

A given quantizer is completely defined byλ(x), which defines
the density of codevector points (and thus also the volume of the
local Voronoi regions), and byhx, which defines the local shape
of the Voronoi regions at pointx.

For any suitable distortion function of interest, the optimal
ellipsoidal Voronoi region shapes can be approximated, the opti-
mal density function given these shapes can be determined, and
thus an approximation for the expected optimal distortion can be
computed. This allows expressions for the performance of opti-
mal quantizers to be derived, and also allows expressions for the
performance of suboptimal quantizers designed using suboptimal
distortion measures to be derived.

Following the approach presented in [1], the optimal local
Voronoi region shapes can be approximated by

hoptx (y) = h
ell−D(x)
x (y),

the Voronoi region shapes which result when an unstructured quan-
tizer is trained by minimizing the WMSE can be approximated by

hWMSE
x (y) = h

ell−diag(Di,i(x))

x (y),

and the Voronoi region shapes which result when an unstructured
quantizer is trained by minimizing the MSE can be approximated
by

hMSE
x (y) = hell−Ix (y).

These hyper-ellipsoidal approximations for the shapes cannot be fit
into a non-overlapping lattice which covers the region of support
for the input vectors, and thus the use of these approximate shapes
results in lower bound to the truly achievable distortion.

The optimal codevector density function for the quantizer with
the optimal Voronoi region shapes can then be approximated [1] as

λopt(x) =

(
Ir[h

opt
x ,D(x)]f(x)

)n/(n+r)∫ (
Ir[h

opt
y ,D(y)]f(y)

)n/(n+r)

dy

,

and similarly the codevector density functions which result when
an unstructured quantizer is trained by minimizing the WMSE and
MSE,λWMSE(x) andλMSE(x) can be defined using the above
expression withhWMSE andhMSE respectively replacinghopt.

With the optimal approximation described above, it can be
shown that

Ir[h
opt
x ,D(x)] =

n|D(x)|r/2n

(n+ r)κ
(r/n)
n

.

For r = 2, a closed form expression exists forI for an arbitrary
ellipsoidal shape [1],

I2[h
ell−M (x)
x ,D(x)] =

|M(x)|1/ntr
(
M−1(x)D(x)

)
(n+ 2)κ

(2/n)
n

,

and thus closed form expressions for the optimal, WMSE, and
MSE quantizers exist. Unfortunately, we know of no closed form
expression for an arbitrary shape forr 6= 2, although the integral
can be numerically evaluated or approximated.



Given a database of vectors, the approximate expressions for
the expected distortion can be approximated by a sum over the
vectors in the database as

Erd(Q) ≈ 2−Br/n

2r/2

∑
x
Ir [hx,D(x)]λ−r/n(x).

As shown in the above expressions, the codevector density,λ(x),
is typically a normalized function off(x) to some power6= 1,
so evaluating this sum requires a good model of the density of the
input. In many of the references and in this work, the previously
defined Gaussian mixture model is used as an estimate off(x).

Similar derivations which utilize recursion in the quantization
procedure has been described in [4]. In this approach, the source
is taken as a random vector sequencexi and the quantizer is al-
lowed to change at each discrete timei as a function of previous
input vectorsxi−1 to xi−N . Space does not permit listing the
equivalent expressions, but the derivation in [4] combined with the
formulation above is straightforward.

3. EVALUATION OF THEORETICAL ESTIMATES

This section describes methods used to evaluate the expressions
for the high rate performance and provides the resulting values for
a comprehensive set of conditions.

3.1. Procedures

The numerical estimates were computed using a database of 150,000
spectral vectors. Tenth order LPC coefficients were computed
from a speech database every 20 ms using standard Levinson-
Durbin recursions with bandwidth expansion of 10 Hz.

Estimation of the density of the spectral vectors was performed
in the LSP domain with N=1 (1st order recursion, modeling 20
dimensional vectors [xi−1xi]) using a 32 mixture model allow-
ing full optimization of the mean vector and covariance matrix
per mixture. The optimization was performed over 600,000 LSP
vectors which were distinct from the 150,000 used in evaluation
of the distortion expressions. A non-recursive (N=0) model was
computed directly from the N=1 model parameters. The bounded
support region of the LSP vectors was not taken into account dur-
ing EM optimization as in [6], but the final density estimate was
divided by the probability that vectors generated with the result-
ing estimated density function was within the region of bounded
support.

For other, non-LSP parameter types, the density function was
transformed from the Gaussian mixture model of the LSPs to the
other parameter set viafParam(p) = 1

|Jω|fω(ω), whereJ is
the Jacobian matrix of the transformation from the LSP domain to
the other parameter set. This approach ensures that the same den-
sity model is used for all parameter sets and that no bias between
parameter sets exists due to differences in modeling.

As noted in [4], practical normalization of the density func-
tions requires averaging over randomly generated vectors rather
than over the database of spectral vectors. For non-recursive re-
sults, this normalization factor need only be computed once: for
these cases 10,000 random vectors were used for computing the
normalization value. For recursive results, each input vector has a
different set of previousxi−1...xi−N leading to a different opti-
mal codevector density and thus a different codevector density nor-
malization factor. Due to the high complexity involved, only 100
random vectors were used for each input vector in the normaliza-
tion procedure. It was found that increasing this number above 100
did not affect the results presented by more than approximately 0.1
bit.

3.2. Results

The distortion integral is a function of the number of bits used. The
tables presented below list the number of bits required to achieve
an average LSD of 1 dB.

Table 1 shows the high rate estimate of the bits necessary for
the optimal (i.e., usinghoptx andλopt(x) in the performance ex-
pressions) non-recursive RMS quantizer (r = 1) and MS quantizer
(r = 2) to achieve 1 dB LSD. The distortion for the optimal quan-
tizer is identical for all parameter types. Foroptimal quantizers,
partial-band LSD requires close to 2 bits less than that of full-band
LSD.

Table 2 shows the high rate estimate of the bits necessary for
the non-predictive MS (r = 2) LSP and CEPS quantizers trained
and tested using the true LSD (i.e., optimal withhoptx andλopt(x)

), the WMSE (i.e., withhWMSE
x andλWMSE(x) ), and MSE

(i.e., with hMSE
x andλMSE(x) ) to achieve 1 dB full-band and

partial-band LSD. While the optimal quantizer requires fewer bits
for partial-band LSD, the MSE quantizer does not. This is because
the partial-band weighting causes the LSP sensitivity matrix to not
be diagonal, and causes the higher LSPs to become less sensitive,
resulting in the diagonal elements becoming more separated and
thus causing the identity matrix approximation used in the MSE
case to become a poorer approximation. Similar effects are seen
for the CEPS parameters.

Table 3 shows the high rate estimate of the bits necessary for
the non-predictive MS (r = 2) quantizers trained and tested by
minimizing the true LSD, the WMSE, and the MSE to achieve 1
dB full-band LSD. These results are for the LPC coefficients, the
reflection or PARCOR coefficients (K), the Log Area Ratio (LAR)
and ArcSine (ASIN) transforms of the reflection coefficients, the
Line Spectral Pair (LSP) frequencies, and the Cepstral coefficients
(CEPS) [8]. The LSP pairs have a diagonalD matrix for full band
LSD, and so the LSP performance is optimal also for the WMSE
quantizer [1]. The LSP performance is also good for full-band
MSE. The LAR and ASIN coefficients are scalar transformations
of the K parameters. As a result, the WMSE performance for all
3 parameter types is identical and only MSE performance is better
with LARs and ASINs vs. Ks.

Table 4 shows the high rate estimate of the bits necessary for
the first-order predictive MS (r = 2) quantizers trained and tested
by minimizing the true LSD, the WMSE, and the MSE to achieve
1 dB full-band LSD for the same parameters shown in the previous
table. 1st order recursion results in a savings of 3.5 bits.

Tables 5 and 6 show the high rate estimate of the bits necessary
for the non-predictive MS (r = 2) of a set of LSP and CEPS quan-
tizers with the optimal, WMSE, and MSE Voronoi region shapes,
crossed with the optimal, WMSE, and MSE density functions, to
achieve a 1 dB full-band LSD. The columns show the results using
hoptx , hWMSE

x , andhMSE
x , while the rows show the results us-

ing λopt(x), λWMSE(x), λMSE(x), andλ(x) = f(x). Similar
results were obtained for 1st order recursive quantizers, but space
limitations do not allow the results to be included here. These esti-
mates do not appear to be particularly sensitive to the density func-
tion. In particular, utilizing a suboptimal density function with the
optimal Voronoi region shape appears to also achieve good per-
formance. However, these estimates are highly sensitive to the
Voronoi region shape.

The approach here can be used to evaluate the high rate perfor-
mance of an arbitrary deterministic VQ scheme where the statis-
tics of the Voronoi region shapes and the codevector density can
be computed. For example, future work may include evaluating
the performance of the practical schemes described in [4, 7].

The “optimal” results here assume that the source density mod-
eled by the Gaussian mixture model is the true density of the source.



This is an overly optimistic assumption, and the “optimal” results
presented here are an upper bound to the estimate which would
be computed if the true LSP source density was known. Improve-
ments in modeling (e.g., by using a greater number of mixtures,
incorporating the bounded support during the EM optimization as
in [6], etc.) may result in further refinements and improved esti-
mates.

4. CONCLUSION

High rate VQ theory has been reformulated to separate the effects
of codevector density and local Voronoi region shape on overall
VQ performance. Estimates of the theoretical performance for a
large class of spectral quantizers have been presented.

Future work may include improving the modeling of the LSP
source density, analysis of recursive quantizers of order greater
than one, and analysis of quantizers designed with arbitrary but
specific and/or random Voronoi regions shapes and codevector den-
sities (e.g., the quantizers discussed in [4, 7]).
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γ = 1 γ = 0.75

r = 1 21.96 20.08
r = 2 22.45 20.64

Table 1. Bits Required forE = 1 dB LSD for Optimal Quantizers
vs. r, full/partial band

Param Bandwidth Optimal WMSE MSE
LSP γ = 1 22.45 22.45 23.46
LSP γ = 0.75 20.64 20.80 23.96
CEPS γ = 1 22.45 26.43 28.28
CEPS γ = 0.75 20.64 27.23 29.55

Table 2. Bits Required forE = 1 dB MS (r = 2) LSD for Optimal
LSP/CEPS Quantizers vs. full/partial band

Param Opt WMSE MSE
LPC 22.45 32.41 32.62
K 22.45 27.54 29.88
ASIN 22.45 27.54 29.09
LAR 22.45 27.54 29.12
LSP 22.45 22.45 23.46
CEPS 22.45 26.43 28.28

Table 3. Bits Required forE = 1 dB MS (r = 2) full-band (γ = 1)
LSD vs. parameter type, error measure used in training/testing : no
recursion

Param Optimal WMSE MSE
LPC 17.02 26.54 26.65
K 17.02 21.82 24.17
ASIN 17.02 21.82 23.41
LAR 17.02 21.82 23.43
LSP 17.02 17.02 17.99
CEPS 17.02 20.38 22.39

Table 4. Bits Required forE = 1 dB MS (r = 2) full-band (γ = 1)
LSD vs. parameter type, error measure used in training/testing :
1st order recursion

Dens - Shape Optimal WMSE MSE
Optimal 22.45 22.45 23.49
WMSE 22.45 22.45 23.49
MSE 22.47 22.47 23.46
f(x) 22.67 22.67 23.73

Table 5. Bits Required for LSP Quantizers forE = 1 dB MS
(r = 2) full-band (γ = 1) LSD vs. combination of density and
Voronoi region shape

Dens - Shape Optimal WMSE MSE
Optimal 22.45 26.06 28.21
WMSE 23.07 26.43 28.45
MSE 22.46 26.09 28.28
f(x) 22.67 26.35 28.53

Table 6. Bits Required for CEPS Quantizers forE = 1 dB MS
(r = 2) full-band (γ = 1) LSD vs. combination of density and
Voronoi region shape


