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ABSTRACT

In this paper, we study the generation of binary sequences
that exhibit the characteristics of higher order white noise
signals. Three classes of binary sequences are examined:
Gold sequences, dual-BCH sequences, and sequences gener-
ated by the term—by—term modulo 2 addition of two maximal
length sequences whose least periods are relatively prime. It
is shown that in all of the cases the autocorrelation and the
higher order moment spectra are determined by the cross-
correlation function of the component sequences used in each
construction. The number of peaks appearing in higher order
moments is significantly reduced or vanished in all classes.
The quality and efficiency of sequences from each class in
simulating higher order white noise signals is demonstrated
by simulations in the context of bilinear input—output system
identification.

1 INTRODUCTION

White noise signals have been widely used in the area of
system identification because they have a rich spectrum and
will therefore affect a large number of system modes, making
them particularly suitable for linear [10] and especially non-
linear system identification [7], [8]. Binary maximal length
sequences (m—sequences) can approximate very well second
order white noise signals and their properties have been stud-
ied analytically in the context of linear [10] and nonlinear [7]
system identification.

However, maximal length sequences have the disadvan-
tage that they cannot be used to approximate higher order
white noise signals due to the existence of peaks in their
higher order statistics (moments and cumulants). In many
important applications like blind identification of linear sys-
tems [4], identification of finite Volterra series [6], [7], [8]
and bilinear input-output models [11], e.t.c., the identifica-
tion procedure requires that the unknown system is excited
with a higher order white noise input signal. In this paper,
we study the generation of binary sequences that exhibit the
characteristics of higher order white noise signals and are
obtained from appropriately selected pairs of m—sequences
of either the same or different least periods.

We show that the autocorrelation function and the higher
order moments of a binary sequence constructed by the mod-
ulo 2 addition of two m—sequences of arbitrary least periods,
depend on their crosscorrelation almost everywhere. When
the two m-sequences have the same least period then un-
der certain conditions ([2], [9]) their crosscorrelation func-
tion takes three specific values, and the number of higher
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order moment peaks of the resulting binary sequence is sig-
nificantly reduced or vanished. We also show that if a se-
quence belongs to the dual code of a binary t—error correct-
ing BCH code then all its higher order moments up to order
2t are free of peaks. When the two m-sequences have rel-
atively prime least periods their crosscorrelation function is
constant everywhere, and thus the values of the statistics
of the resulting binary sequence and the specific positions
where these values appear are determined a priori by the
choice of the particular m—sequences. Moreover, although
peaks appear in the higher order moments almost as often
as in the case of m—sequences, these peaks are usually posi-
tioned quite far from the origin, thus making these sequences
almost ideal for simulating higher order white noise signals
in some identification problems. The quality of the above bi-
nary sequences in simulating higher order white noise signals
is demonstrated by simulations in the identification of bilin-
ear input—output models, where m—sequences fail to provide
unbiased estimates of the system parameters. All the results
presented in this paper are stated without proof which can
be found in [5].

2 MAXIMAL LENGTH SEQUENCES

In this section we consider the case of binary m—sequences.
We also introduce the notion of trinomial pairs and show
that such pairs characterize m—sequences as inappropriate
for simulating higher order white noise signals. In what fol-
lows Fo is the prime field {0,1} of 2 elements, & denotes
modulo 2 addition and Zy = {0,1,..., N — 1} is the set of
integers modulo V.

Let z be an infinite periodic binary sequence of least pe-
riod N generated by a linear feedback shift register (LFSR)
with characteristic polynomial g(z) = 1 ® giz @ --- @
gn—12""1 @ 2" € Ty[2], and let x = (xo,z1,...,2N8—1) be
the first NV elements of x, where z; € Fy for all ¢ > 0. Then
sequence z satisfies the linear recurrence relation [3]

Tt = Gne1Zt—1 D+ B G1Ti—nt1 D Ti—n, t>n (1)

which is associated to the polynomial g*(2) = 1@ gn—12 ®
@ @2" @ 2" = 2"g(1/2), called the reciprocal of g(z).
For the rest of the paper, g(z) will be referred to as the min-
1mal polynomial of sequence z, i.e. the lowest degree polyno-
mial whose corresponding LFSR generates the sequence, and
for a given sequence z it is unique. Moreover, periodic bi-
nary sequences with the property that the numbers of ones
and zeros in one period differ by at most 1 will be called
balanced sequences, and the statistics of sequence x will be
defined in terms of the {+1,—1} version Z of z, given by



Tt = (—1)", since this is the one that normally arises in
systems analysis [9].

Sequence x is an m-sequence, i.e. its least period
N has the maximum possible value which is equal to
2" — 1, if and only if g(z) is a primitive polynomial. If
D denotes the delay operator which shifts vectors cycli-
cally to the right by one position, then clearly Dz =
(TN=ty.- ,TN—1,T0,-..,TN—t—1) and obviously it holds that
D 'z = DY 'x. The most important properties of m-
sequences are described next ([3], [4]):

(i) m—sequences have the well known shift-and—add prop-
erty, that is for any t1,t2 € Zn, t1 # t2, there exists a
unique t3 € Zy distinct from both ¢; and t» such that
Diiax @ D2z = D¢,

(ii) The number of ones in x, denoted by wt(x), is equal to
271 and hence m-sequences are balanced.

The periodic autocorrelation function R, of sequence z is
the real-valued function given by the formula

N-1
1 2
RE(T) = N E (_1)$t@zt—1— =1- N Wt(ﬂ} & DTE) (2)
t=0

where 7 € Zy. By properties (i) and (i) we infer that m-
sequences have the ideal autocorrelation property
1 if =0 (mod N
Ra(r) = ifr=0 (mod N),
—1/N otherwise.

The autocorrelation of an m-sequence with least period
1023 and minimal polynomial g(z) = 1 & 2° @ 219 is
shown in Fig. 1 where we have used the obvious identity
Ry(—7) = Ry(N — 7). The periodic binary sequence x
forms a white noise signal of order k if its cumulants up
to order k are multidimensional impulse functions, that
is: cum[z, D™x,...,D™~1x] = ~456(71)---d(15—1) for all
s = 2,...,k, where “cum” denotes the cumulant of order
s, 0(-) is the usual delta function and ~s is the sth order
intensity of . Cumulants and moments are closely related
and the previous definition is equivalent to higher order in-
dependence of z ([4]). If the expected value of z is zero,
as it is considered to be the case of balanced sequences, the
cumulants up to order three are equal to the corresponding
moments of equal order. As a result, m—sequences are well
suited for simulating second order white noise signals as long
as their least period N is sufficiently long. The third order
moment sequence of x is defined in accordance to (2), as

follows L

1=
Ry(t1,m2) = — (—1)% BTt OTt—r,
N =

2[\:”

1- —wt(x® D"'x® D™x)

where 7; € Zn, and is symmetric. Properties (i) and (i) im-
ply that the third order moment of m—sequences takes the
value —1/N everywhere in Z% except at pairs (11, 72) € Z%
such that « = D™ a @ D™x. These pairs (11, 72) are called
trinomial pairs of sequence x and they correspond to max-
imal peaks in the third order moment sequence, since then
we have R,(m1,72) = 1. Since m-sequences are balanced
it is clear that trinomial pairs cause obstruction of higher
order white noise randomness. Moreover, in the case of m—
sequences for each 7 = 1,...,N — 1 there exists exactly
one trinomial pair (71, 72) due to property (i). In the sequel,
the set of all trinomial pairs of the sequence z with minimal
polynomial g(z) is denoted by T and its order by |Ty|.

The third order moments of the m-sequence x with min-
imal polynomial g(z) = 1@ 2°® @ 2!° is shown in Fig. 1.
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Figure 1: The autocorrelation and the third order moments
of the m—sequence x with minimal polynomial g(z) = 1 &
2@z

As expected |T,| = 1022. Hence, m-sequences cannot be
employed in applications where a higher order white noise
signal is required. We also note that all of the above and

subsequent results can easily be generalized to the case of
moment sequences of order greater than three.

3 GOLD AND DUAL-BCH SEQUENCES

In this section we study the case of binary sequences obtained
from pairs of m—sequences of the same least period, as well
as the case of dual-BCH sequences. The number of peaks
appearing in the higher order moments of these sequences is
significantly reduced or vanished.

If the minimal polynomials of any two binary sequences x
and y are g(z) and f(z) respectively, then the minimal poly-
nomial of sequence w = x @ y is the least common multiple
(Icm) of g(z) and f(z) ([3]). The interest in such sequences is
motivated by the following Theorem which implies that the
number of peaks appearing in the third order moments of w
is reduced or vanished, depending on the particular choice
of z and y.

Theorem 1. Let x and y be two distinct binary sequences of
the same least period N, and let their minimal polynomials
be g(z) and f(z) respectively. Then, the set of all trinomial
pairs of sequence w = x Dy is given by: Tem(g,5) = Ty N Ty.

Theorem 1 is still valid if x and y have different least pe-
riods. For example, if sequence = has least period M, where
M divides N, then Theorem 1 can be applied by replacing
T, by the set of all trinomial pairs T, of z in Z% which is
given as follows:

T, = {(r1,72) € Z% : (. mod M, 7, mod M) € T,}.

The periodic crosscorrelation function R,y of sequences z
and y with least period N is the real-valued function defined
similarly to (2) as follows

N-—-1
1 . 2 .
Rey(r) =& > o (—1)TOver =1 - ~ Wtz e D'y) (3)
t=0

where 7 € Zn. If x and y have different least periods, say
N; and N, respectively, then (3) is still valid but now N
equals the lem(Ni, N2), and is the least period of sequence
w = z@y. The following two Theorems imply that the statis-
tics of sequence w can be fully determined by the crosscorre-
lation spectra of x and y when both sequences are maximal
length.

Theorem 2. Let x and y be m—sequences, of least periods
N1 and Na, and with minimal polynomials g(z) and f(2)
respectively. Then, the autocorrelation function R., of se-
quence w =z @y, of least period N = lem(N1, N2), is given
by

!The notation 7 = 0 (mod N;) 4 = 1,2, implies that 7 is a
nonzero multiple of N; but not of N.



Figure 2: The autocorrelation and the third order moments
of sequence w = @y, where y is obtained by decimating the
m-sequence & with minimal polynomial g(z) =1 @ z* @ 2°,
by 5 (left) and by 9 (right)

1 if =0 (mod N),
—-1/N, if 7 =0 (mod N,),
—]./N2 ifr=0 (mod Nl),

R, ,(7") otherwise,

Ry (1) =

for some integer ' € Z .
Theorem 3. Let x and y be m—sequences as defined above.
Then, the third order moments R (71,72) of sequence w =
T @y are given by
1 if (Tl,Tz) GTg’ﬂT},
—]./N1 if (Tl,Tz) GT;\(T;QT}),
—]./Nz if (Tl,Tz) GT;\(T;QT;),
R, (1) otherwise,
for some integer T € Zn.

Ry(11,7m2) =

T,, T} denote the sets of all trinomial pairs of sequences z,
y respectively in Z%, and the notation A\ B represents the
subset of all elements of A which do not belong in B, where
B is a subset of A. The moments of order greater than three
of sequence w can still be determined by Theorem 3.

If £ and y have the same least period and the roots
of their minimal polynomials are related to each other as
described below, then their crosscorrelation function takes a
fixed set of values ([2], [9]), and the resulting class of binary
sequences w = z @ y are called Gold sequences.

Theorem 4 (Gold). Let us consider the m—sequences x
and y, of least period N = 2™ — 1, with minimal polynomials
g(z) and f(z) respectively. Let the roots of f(z) be the dth
powers of the roots of g(z), where either d = 28 + 1 or
d=2—2% + 1, and e = gcd(k,n) is such that n/e is odd.
Then, the spectrum of R,y is three—valued and

(—=142+)/2) /N occurs 2"~ 4 2(ne=2/2  times,

(-1)/N occurs 2" —2"7°¢—1 times,

(=1 =2+e)/2) N occurs 2n7e7! —2(n=e=2/2 times,
per period.

Obviously, the value of e affects the magnitude of R;,,. In
particular, there is a tradeoff between the number of times
the values (—1 #+ 2("**)/2) /N appear, and their magnitude.
Hence, the value of e should be chosen according to the con-
text of the specific application. We also note that the as-
sumption of Theorem 4 concerning the roots of f(z) and
g(z) can be satisfied if y is obtained by decimating z by d

(3D

As a consequence, Theorems 2 and 3 (for Ny = N, = N)
together with Theorem 4 can be used to obtain sequences
whose autocorrelation and higher order moments can be con-
trolled by the choice of certain parameters. Moreover, the
number of higher order moment peaks is significantly re-
duced or even vanished. This is illustrated in Fig. 2, where
y is obtained by decimating the m-sequence x with minimal
polynomial g(z) = 1@ z* @ 2° and least period 511 (n = 9),
by 5 (e=1, k=2) and by 9 (e = 3, k = 3). The sequences
w used in this example were balanced. This can be easily
achieved if we notice that since Ef;}l(—l)wt = NR.4(0),
w is balanced if and only if R, ,(0) = —1/N. This example
also illustrates the tradeoff between the magnitude of the
values of R,,, and the number of times they occur in one
period.

The class of dual-BCH sequences is also of great impor-

tance since their higher order moments are free of peaks up
to an order determined by the designed distance of the BCH
code:
Theorem 5. Let g*(z) be the generating polynomial of a
binary t—error correcting BCH code ([1], [4]). Then, the bi-
nary sequence w with minimal polynomial g(z) has no peaks
in its sth order moment, for all integers s < 2t.

‘We note that when the integer n in Theorem 4 is odd
and e = 1, Kk = 1 and d = 3, the resulting Gold sequence
w =z @ y is a double—error correcting dual-BCH sequence
with both sequences  and y being maximal length.

4 M-SEQUENCES WITH RELATIVELY
PRIME LEAST PERIODS

In this section we study the case of binary sequences ob-
tained from pairs of m—sequences with relatively prime least
periods. The crosscorrelation function of these m—sequences
is constant everywhere as the following Theorem indicates.
Theorem 6. The periodic crosscorrelation function R, ,(T)
of the m—sequences x and y, with relatively prime least peri-
ods N1 and Na, and with minimal polynomials g(z) and f(z)
respectively, equals 1/N for all T € Zn, where N = N1 N>.
As a result, the autocorrelation function and the higher
order moments of sequence w = @y of least period N, where
z and y satisfy the assumptions of Theorem 6, are given by
Theorems 2 and 3 by substituting R, , with 1/N. Therefore,
R,, takes four values which appear a specific number of times
in one period and also at specific positions determined by
the least periods of z and y. Similar remarks hold for the
higher order moments of w. In addition, sequence w is always
balanced since 3" ' (=1)"* = NR,,(0) = 1. The set of all
trinomial pairs T, of sequence w can be explicitly expressed
as follows ([5]):
Typ ={(r", %) € Z%: ° = TfN;(Nl) +T§’Nf(N2) mod N
for i = 1,2, where (r{,75) € Ty and (7{,7) € T}
where ¢(-) is the Euler’s totient function ([4]). Moreover, it
holds that |Ty | = |Ty||T¢|- A direct implication of the above
expression is that 7;¥ runs through all elements of Z 5 which
are not zero or a multiple of N;, exactly once. It can also be
shown that sequence w has no trinomial pairs in Z%, or Z3,,
if and only if  and y have no common trinomial pairs in Z?\,l
and Z?Vz respectively. This usually holds in practice, and
hence the trinomial pairs of w are in most cases positioned
quite far from the origin. Since this property can easily be
generalized to higher order moments of w, we conclude that
this class of binary sequences is almost ideal for simulating
higher order white noise signals in identification problems
where peaks in higher order moments of the excitation signal,



m—sequences Gold sequences
True Mean Variance Mean Variance
Value
al 1.4 1.7551 5.3229 1.3965 | 6.8 x 10T
a2 -0.48 | -3.7441 343.4219 -0.5984 7.9262
b0 1 0.9785 1.0 x 1077 1.0104 | 2.0 x 107
bl 0.5 0.1752 5.1383 0.4450 7.2 x 1071
cl1 0.05 0.0288 | 2.0 x 10~ 7 0.1128 | 2.0 x 10~ 7
cl2 0.1 0.1026 | 2.4 x 10~3 0.1147 1.7x10~3
c22 0.2 0.1903 1.2x 107 0.1527 | 6.4 x 103

Table 1: N = 4095, 40 runs, SNR=20dB, maximal versus
Gold sequences

which are far from the origin, do not affect the identification
procedure.

5 SIMULATIONS

In this section we demonstrate the quality and efficiency of
the proposed binary sequences in simulating higher order
white noise signals, by providing simulation results in com-
parison with m—sequences, for the identification of two bilin-
ear input—output models of the form:
2(n) = X8 aiz(n — i) + 182, Y49 ey a(n — iyu(n — )+
+3 M bu(m—i),  y(n) = 2(n) +n(n)
using the cumulant based algorithm of [11]. y(n) is the
measured output of the model and u(n) is the higher or-
der white noise input signal. The measurement noise 7(n)
is assumed to be a zero mean random process independent
from u(n), and in all simulations was a Gaussian IID random
process. If p1,pa,...,pr, denote the roots of the polynomial
a(z) = 2" (1 - Zf;l a;z~"), then the closer the p;’s are to
the unit circle the larger is the error induced in the identi-
fication algorithm of [11] by higher order moment peaks of
u(n) even if they are positioned far from the origin ([5]). In
the simulations, we used those m-sequences of a given data
length for which their trinomial pairs are positioned as far
from the origin as possible.

We consider two bilinear models, one with ki = 2, ko =
ks = 2, ks = 1 and with the roots of a(z) being equal to
0.6 and 0.8, and one with k1 = 2, ko = k3 = 3, ks = 1
and with the roots of a(z) being equal to 0.4 and 0.9. For
the first model simulation results are provided in Table 1 at
an SNR ratio of 20db comparing the best m—sequences of
least period 4095 in the sense described above, with Gold se-
quences obtained from Theorem 4 with N = 4095 (n = 12),
e=4, k=8and d= 2% —2¥ + 1. For the second model
simulation results are given in Table 2 at an SNR ratio of
20db comparing the best m—sequences of least period 16383
with sequences obtained from two m-sequences with rela-
tively prime least periods 31 and 511. We observe that most
of the parameter estimates obtained with m-sequences are
biased (especially the estimate of a2) and with much larger
variances compared with the variances obtained with Gold
sequences and sequences resulting from two m-sequences,
which yield almost unbiased estimates of all model param-
eters. The above results clearly indicate that the proposed
binary sequences are almost ideal for simulating higher order
white noise signals.

6 CONCLUSIONS

In this paper we studied the generation of binary sequences
that exhibit the characteristics of higher order white noise
signals and are obtained from appropriately selected pairs
of m—sequences of either the same or relatively prime least

sequences obtained

m—sequences
from 2 m-sequences

True

Mean Variance Mean Variance
Value
1.3

al 1.3953 | 5.1 x 10~T | 1.2969 1.4 x 10~ T
a2 | -0.36 | -1.0572 6.8023 -0.4261 | 8.1x 10T
b0 1 0.9975 | 1.9x10-° | 0.9983 | 2.3x 10 °
b1l 0.5 0.4091 | 5.2x 10T | 0.5050 1.4 x10 T
cll | 0.05 | 0.0425 | 3.0x 10 % | 0.0467 | 2.0x 10 ¢
cl2 0.1 0.1510 | 2.1 x 10-3 | 0.0915 1.4 %1073
cl3 0.2 0.1809 | 2.8 x 10~ 3 | 0.1881 1.4 %103
c22 | -0.15 | -0.2005 | 2.5 x 10~° | -0.1361 | 1.9x 103
c23 [ 007 | 0.0472 | 9.1x10 3 | 0.0760 | 9.7x 10 3
c33 0.3 0.3867 | 3.0x10 2 | 0.3176 | 9.4x 10 3

Table 2: 40 runs, SNR=20dB, maximal of least period 16383
versus sequences obtained from two maximal and having
least period 15841

periods. The statistics of these sequences depend on the
crosscorrelation function of the two component m—sequences
which is either three—valued or constant everywhere. The
number of their higher order moment peaks is significantly
reduced or vanished, as it is also the case of dual-BCH se-
quences. The quality of these sequences in simulating higher
order white noise signals was illustrated by simulations in
the identification of bilinear input—output models.
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