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ABSTRACT

A class of adaptive prediction algorithms is considered
for model-based digital signal processing. Based on a
single adaptive parameter, the so-called general param-
eter, the algorithm facilitates adaptation of the predic-
tor properties between two boundary cases. Typically,
the boundaries are set according to a quick response and
good noise attenuation, respectively. The adaptation al-
gorithm is described, two example cases are discussed,
and the stability condition is derived.

1 INTRODUCTION

By predictors we in this paper mean linear Finite Im-
pulse Response (FIR) filters which are capable of un-
biased extrapolation of certain signal classes, such as
polynomials and sinusoidal signals [1]. Such filters
find applications, for example, in velocity measurements
[2][3], control systems [4], industrial electronics [5], data
smoothing [6], and hybrid nonlinear filters [7].

Adaptive filters are commonly used in signal process-
ing applications where the characteristics of the signal
or noise are time-varying, or the filtering task otherwise
cannot be fully fixed in advance. Many popular general-
purpose adaptation algorithms exist, such as the Least
Mean Square (LMS) and Recursive Least-Squares (RLS)
algorithms [8]. In the standard form, such algorithms re-
quire an arithmetic operation to be done on all of the
coefficients. Coeflicient updates in the LMS algorithm
require N + 1 multiplications for an N-tap transversal
filter. This easily leads to a high computational burden
if long filters are needed due to the length of the impulse
response of the system. For specific signal models, the
filter may be constrained, e.g., as an adaptive notch fil-
ter [8], or as a variable-order polynomial predictor [9].
Such constrained filters typically have only one or a few
adaptive parameters [10].

An example of single parameter-based adaptive algo-
rithms is the so-called general parameter method, origi-
nally proposed for system identification by Ashimov and
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Syzdykov [11]. Using this algorithm for adaptive filter-
ing, the output is computed as

N
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where the h(k)’s are the coefficients of a fixed basis filter.
The general parameter g(n) is updated as

N—

g(n+1) = g(n) +1lr(n) —y(n)] Y z(n—k), (2)

k=0

—

where r(n) is the reference input against which the out-
put is compared, and v is a gain factor.

In this paper, we consider a general parameter-based
adaptive algorithm for prediction and estimation in real-
time signal processing. The algorithm is described in
Section 2. Examples of adaptive prediction of polyno-
mial and sinusoidal signals are given in Sections 3 and
4, respectively, and the stability condition is derived in
Section 5. The paper is concluded in Section 6.

2 GENERAL PARAMETER-BASED ADAP-
TIVE PREDICTORS

We consider predictors with the transfer function of the
form

H(z,n) = P(z) + 9(n)Q(2), 3)

where P(z) and Q(z) are fixed FIR transfer functions,
and g(n) is the time-varying general parameter, 0 <
g(n) < gmaz- There are two typical cases where such
constrained single-parameter adaptive prediction can be
useful.

Case I. P(z) is designed as a predictor for a low-order
signal model, such as a low-order polynomial. Such low-
order models support good noise attenuation properties.
The general parameter is used for adapting to input sig-
nals which follow a higher-order model. g(n) is raised to
Gmaz When the higher-order model gives smaller predic-
tion errors, and for low-order signals the parameter is
lowered back to zero, as the output noise level will then
be lower.



Case II. P(z) is designed as a minimum-length predictor
for unbiased prediction of the specified signal type, ca-
pable of responding rapidly in transient situations. Be-
cause of the short length, its noise attenuation char-
acteristics are poor; it may even amplify noise, and
is therefore used only when the signal-to-noise ratio is
high. Q(z) is a longer filter, designed for good noise
attenuation. When the input signal is noisy, the adap-
tation algorithm activates Q(z) by raising the value of
g(n).
The output of the composite predictor is given by

[p(k) + g(n)q(k)]z(n — k), (4)

where the p(k)’s and the g(k)’s are the coefficients of the
FIR filters P(z) and Q(z), respectively. The parameter
update algorithm is:

N-—

g9(n+1) = g(n) +[r(n) —y(n)] p_ q(k)z(n—k). (5)
k=0
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Equation (5) can be considered as a generalization of
the standard general parameter algorithm (2), in which
all the coefficients ¢(k) are equal to one.

3 POLYNOMIAL PREDICTION

The minimum-length FIR predictor for p-step-ahead
prediction of Mth-degree polynomials has the transfer

function
M

Hur(2) = (1~ 277)" (©
=0
This is known as the Newton predictor [12]. Longer
predictors can be designed, for example, by minimizing
the noise gain for white noise:

NG = i (k)| (7)
k=0

NG increases with the polynomial order. On the other
hand, for polynomial signals the higher-order differences
in (6) get very small numerical values, which contribute
little to the prediction, and are in practice often buried
in noise. Therefore, it is advantageous to design the
predictor for as small M as possible. Ultimately, the
predictor for M = 0 is an averaging filter which is known
to be the optimum estimator for constant signal levels
with additive white Gaussian noise. The averager has a
constant group delay and does not behave as a predictor
for waveforms which have a nonzero first derivative.
Here we consider a general parameter-based adaptive
scheme of the form (3), where P(z) is a running average
and Q(z) is an estimator for the first derivative. Q(2) is
effectively a differentiator, optimized to have the mini-
mum NG while producing a unity-valued response to a

ramp with a slope of one [13]. The benefit of such an
arrangement is that P(z) has a lower NG than the ramp
predictor consisting of the weighted parallel connection
of P(z) and Q(z). The ramp prediction capability is ac-
tivated only when a nonzero first derivative is detected.

As an example, consider the piecewise-polynomial sig-
nal in Fig. 1(a). Such signals are encountered, for in-
stance, in elevator car motion control systems, where
predictive filtering avoids the harmful delays of linear-
phase lowpass filters [12]. The signal consists of zeroth,
first, and second order polynomial segments and addi-
tive white noise. Figure 2 shows the amplitude responses
of P(z) and P(2) 4 gmazQ(z), both of length 12, with
Gmaz = 6.5. The NG values are 0.0833 and 0.3788, re-
spectively. The derivative estimate produced by Q(z) is
shown in Fig. 1(b) and a trace of g(n) is shown in Fig.
1(c). g(n) rises to its maximum value for the first and
second order polynomial segments, thus minimizing the
prediction error, and returns to zero for constant levels,
again minimizing the prediction error by producing a
lower noise level.
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Figure 1: (a) The input signal. (b) Estimate of the first
difference. (c) Trace of g(n).
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Figure 2: Amplitude responses of P(z) (solid line) and
P(2) + gmaz@(2) (dashed line).



Although second-order polynomial segments are
present in this example, the values of the second dif-
ference are two orders of magnitude lower than the first
difference. The second or higher order differences are
therefore not included in the adaptive algorithm.

A computationally efficient implementation of the
proposed adaptive predictor can be constructed such
that the arithmetic complexity does not depend on N.
This is accomplished by using recursive running sum-
based structures for both the running averager P(z) and
the differentiator Q(z) [13].

4 SINE PREDICTORS

The coefficients of optimal p-step-ahead predictors for
sinusoidal signals of frequency wy are given by [1]

hs = S(STS) !dg, (8)
where
sin(0) cos(0)
sin(lwp) cos(lwp)
S — sin(2wp) cos(2wp)
sin((N — 1)wo) cos((V — 1))
and

ds = (sin(—pwo)> _

cos(—pwo)

The noise gain can be reduced by increasing N. How-
ever, a short predictor reacts more rapidly to phase
changes and other transients than a long one. This ob-
servation gives rise to the use of an adaptive scheme of
the form (3), where P(z) is a short predictor and Q(z) is
an auxiliary filter which is activated for noisy signals. In
transient situations, P(z) is able to react more quickly,
and g(n) is reduced.

These properties are demonstrated by the following
example. With wo = 0.17 and p = 1, P(2) is chosen to
be the minimum-length predictor, which has the coeffi-
cient vector h% = [1.9021 — 1.0000]. Q(z) is obtained
by subtracting h% from a 12-long predictor hg?. The
amplitude responses of the two predictors are shown in
Fig. 3. The corresponding NG values are 4.6180 and
0.1550. The input signal is a sine wave of the nominal
frequency, with superimposed white noise until sample
number 2000. Then the noise is switched off and the
signal goes through a series of stepwise phase changes
of 0.1r. The parameter g(n) and the prediction error
are plotted in Fig. 4. g(n) rises to unity for the noisy
input signal, and is reduced by the phase changes. It is
noticed that, unlike the polynomial case, prediction will
be unbiased with any value of g(n) since Q(z) has zero
gain on the nominal frequency.
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Figure 3: Amplitude responses of P(z) (solid line) and
P(z) + Q(z) (dash-dotted line).
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Figure 4: (a) Trace of g(n). (b) The prediction error.

5 STABILITY

The stability of the single-parameter algorithm can be
analyzed by following a nearly similar approach as for
the standard LMS adaptive algorithm [14],[15]. Let us
assume that the reference data sequence is generated by
the linear time varying model

r(n) = x(n)B¢(n) + v(n), (9)

where x(n) = [z(n) z(n — 1) --- z(n — N + 1)]. The
true parameter ®g(n) has a model of the form

©¢(n +1) = O (n) +£(n). (10)

The variables v(n) and £(n) are considered as noise or
disturbances. The adaptation error is

(n) = ©4(n) - O(n), (11)

where
©(n) =p+g(n)q (12)

is the composite coefficient vector, with

p=[p(0) p(1) -+ p(N —1)]"



and

q=[q(0) g(1) --- g(N —1)]".

For simplicity, we have assumed p and q to be of equal
length. If necessary, the shorter one is padded with zeros
to length N. The updated vector is

O(n+1) = 0(n) +7[r(n) - x(n)O(n)]x(n)aq. (13)
Thus, R
O(n
( n) — ©(n) - [r(n) - x(n)©
(n) + £(n) — O(n) — y[x(n)O(n) +v
O(n) +£(n) —[x(n)O(n) +

This can be written in the form

+
N’
I

®
®

n)+

£(n)
3

O(n+1) =

[T - vax(n)x(n)q|®(n) + £(n) — yv(n)x(n)aq, (15)

where I is an N X N unit matrix. The stability of the
algorithm therefore depends on the eigenvalues of the
matrix I — ygx(n)x(n)q which are equal to one except
that given by

A =1-x(n)gx(n)q. (16)
For stability it is therefore required that the gain factor
v is limited by

0<vy< (17)

2
(x(n)q]?’
This condition is not suitable for dynamically adjusting
the gain factor because of problems with zero-valued
data. But as with LMS, one could consider a normalized
algorithm, where the gain has an upper limit [15].

6 CONCLUSIONS

A single-parameter adaptive scheme was proposed for
prediction and estimation. The general parameter-
based adaptive method is computationally efficient and
allows the predictor properties to be dynamically altered
according to the noise content and other signal char-
acteristics. Polynomial and sinusoidal prediction was
demonstrated by examples. As a topic for further re-
search, generalized predictors will be investigated, e.g.,
based on multiple sinusoid models.
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