A STOCHASTIC SINUSOIDAL MODEL
WITH APPLICATION TO SPEECH
AND EEG-SLEEP SPINDLE SIGNALS

David Labarre®, Eric Grivel®, Y annick Berthoumieu® and Mohamed Najim®

(1) Equipe Signa & Image, UMR LAP 5131, ENSEIRB BP99
(2) Equipe SACT, Laboratoire IXL UMR 5818,
Talence 33402, France
Tel : +33556 84 61 85 ; Fax : +33 5 56 84 84 06
E-mail : (Iabarre ; eric.grivel ; najim)@tsi.u-bordeaux.fr ; berthoumieu@ixl.u-bordeaux.fr

ASBTRACT

In this paper, we propose to investigate stochastic
sinusoidal models in order to characterise quasi-
periodic signals. Indeed, in comparison to the broadly
used autoregressive (AR) models, a sinusoidal
approach seems to be more efficient to capture quasi-
periodic feature. Using AR process as a model for the
sine wave magnitudes makes it possible to track the
frequential non-stationarity of the signal.

The scheme we propose operates as follows: once the
frequency components of the signal are obtained,
estimating the magnitudes of each sine component of
the model is performed by means of an Expectation-
Maximisation (EM) agorithm based on Kalman
smoothing.

Results are provided on sleep spindle and speech.

1 INTRODUCTION

Various signals contain quasi-periodic segments. In
this paper we will focus our attention on biomedical
signal analysis and speech modelling.

In biomedical signal processing, the quasi-periodic
feature is exhibited in sleep electro-encephaogram
(EEG), where one can detect and extract quasi-periodic
patterns called sleep spindles (Cf. figure 1). Once these
spindles are detected in the EEG recording by using
methods proposed in [1] or [7], the modelling with a
sinusoidal approach provides the temporal evolution of
their various modes and makes spindle classification
possible.

On the other hand, in the framework of speech
processing, the AR model has been broadly exploited
especialy for LPC based synthesis, CELP coding,
Kaman filter enhancement [2], [3], [5], etc. However,
the AR model does not capture the quasi-periodic
nature of voiced speech frames (Cf. figure 2). For this
reason, considering an all-pole model in which the
excitation may be either noise-like for unvoiced
frames, or pulse-like for voiced frames can be
considered but requires robust Voiced/Unvoiced
decision.
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Figure 1: example of a sleep spindle (f,.=100 Hz)
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Figure 2: quasi periodic nature of a voiced frame
(vowel /A/ with sampling frequency f;=16KHz)

In this paper, our purpose is to derive a stochastic
sinusoidal model defined by a sum of sinusoids, whose
magnitudes are stochastic processes. Once the
frequency components of the signal are estimated, one
can provide the phase of the magnitude of each sine
component.

This paper is organised as follows. In part 2, we
present the stochastic sinusoidal model. In part 3, we
propose an approach to estimate the model parameters.
In the last part, the model is tested with synthesized
signal, sleep spindles and speech signal.

2 THE SINUSOIDAL MODEL

The sinusoidal model we propose is defined as follows:
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where f, is the sampling frequency, v(k) is a zero-
mean additive Gaussian noise with a variance o2, L
is the number of spectral components.

However, when completing the Wigner-Ville
transform of deep spindles, the frequential non-
stationnarity can be exhibited (Cf. figure 3). Such a
remark is also valid when we observe voiced speech
signal and its pitch evolution (Cf. figure 4).
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Figure 4: evolution of the pitch of a voiced speech
signal
For this reason, we propose to model the magnitudes
a;(k) and b,(k) of the spectral components by
respectively n," and n," order AR processes.
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where 0< yf <1 will ensure the model stability.
&, (k) and ¢, (k) arezero-mean Gaussian sequences,

with variance o?.

* The colour (herein grey scale) provides the power of the frequency
components (white for high energy ; black for low energy)
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In this paper, we consider first order AR models, but
the approach can be derived with higher order AR
rocesses.

3 ESTIMATION OF THE MODEL
PARAMETERS

We assume that the estimation of the frequencies f;

can be easily completed. Nevertheless, our method

depends on the context: for speech signals, as a

harmonic model can be considered, robust pitch

tracking is completed. When dealing with EEG, one

can use High Resolution (HR) spectral analysis, such

as Music, Esprit, etc. [8].

Let N observations y(k) be available. Our purposeis

to:

» obtain the Maximum Likelihood of the estimates of

the following model parameters

©)

» estimate the magnitudes «, (k) and 4, (k) .

For such a purpose, we propose to develop an
Expectation-Maximisation (EM) algorithm [8] based
on Kalman smoothing [4]. It is an iterative algorithm.
Each iteration operates in two steps. The M-step
consists in providing an updated estimation of ), and
o?, which requires conditional expectation quantities
concerning a,(k) and b,(k). These quantities can be
obtained during the E-step.
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where E{./Y} represents the conditional expectation

based on the N samples of data. Such quantities can
be obtained by mean of Kalman smoothing, which
corresponds to the E-step.



3.2 E-step

In order to carry out a Kalman smoothing, let us
consider the following state-space representation:

Ok(k +12) = dx(k) +u(k +1)

5
(k) = H(k)x(k) +v(k) ©)

where x(k) = [ay (k),..., a; (k), by (K),.... b, ()] is the
state vector, @ the diagona transition matrix (filled
with the parameters ), ), u(k) the vector of the driving

processesand H (k) thetransfer matrix.

Completing Kalman smoothing requires the estimation
of both j, and o? (obtained during the M-step), and

o? the variance of the noise v(k) (obtained, either

during the HR spectral analysis or during silent period
of speech).

4 APPLICATION TO SPINDLES
CHARACTERISATION

4.1 High resolution spectral analysis for the
frequency components estimation

The ESPRIT TLS [8] method is used to estimate the
frequency components of the spindle. First, the
autocorrelation matrix of the observed signa is
estimated as follows:
~ 1 p
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where N is the length of the observed signal, M the
size of the autocorrelation matrix, and Y the
observation Hankel matrix, which both rows and
columns are sequences of M successively observed
samples.
The second step consists in smoothing the diagonal s of
1%”;, i.e. assigning the average of the terms of a

diagonal to al the coefficients of this diagonal. Thus,
the resulting f?jy matrix has a Toeplitz structure.

Then, we complete an eigenvalue decomposition of
R}, which leads to the estimation of the frequency

components of the spindle and the variance a,f of the
additive Gaussian noise v(k) .

4.2 Application to synthetic spindles

We first exploit the approach we have derived with
synthetic data. In the previous step, we estimate the
frequency components. Here, we focus our attention on
the magnitude estimation.

Tests have been completed on various synthetic
spindles. We present here some examples. The
algorithm proves to be efficient to follow the synthetic
magnitudes (Cf. figure 5), even when a spectra
component disappears for awhile (Cf. figure 6).
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Figure 5: Example of estimation of a synthetic spindle
component
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Figure 6: Estimation of the magnitudes of a component
which disappears for a while

When overestimating the model order, i.e. when taking
into account too-ahigher number of frequency
components, the temporal evolution of the spurious
estimated component is close to zero. Cf. figure 7: a 5"
order model is chosen whereas the synthetic spindle
has only four sine components.
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Figure 7: Estimation of a superfluous component

4.3 Application to real spindles recording

In this section, results based on a rea spindle
(Cf. figure 2) are provided.

Jrequency [ [ NE S
Hz 0.5426 2.3538 4.2355 6.2066

Jrequency S5 Js [ Js
Hz 7.2466 8.8793 | 11.0779 | 13.0858

Table 1: estimation of the frequency components of a
real spindle




Table 1 provides the estimation of the frequency
components obtained by HR spectral analysis.
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Figure 8: estimation of two sine components of a real
spindle

For each spindle, the agorithm converges and

estimates a model which permits to reconstruct the

signal.

5 APPLICATION TO SPEECH
PROCESSING: PRELIMINARY
RESULTS

We have computed the presented approach in the
context of voiced speech enhancement. The quality of
the reconstructed voiced speech signal depends on both
the number of harmonics L and the initial values of

y, and o,

Here, L isequal to 8. Theinitial valuesfor o2 and ),
are respectively 100000 and 0.98.

We provide results for an input Signal to Noise Ratio
(SNR) equal to 15 dB. The SNR improvement is equal
to 6 dB. The temporal evolutions of the original signal,
the noisy signal and the enhanced signal are given in
figure 9.
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Figure 9: original signal, noisy signal and
reconstructed signal

6 CONCLUSION

In this paper, we have proposed a stochastic sinusoidal
model, where the sinusoidal magnitudes are modelled
by AR processes. An EM-based algorithm is then used
to estimate the model parameters and makes it possible
to obtain the magnitudes using Kalman smoothing. In
comparison to commonly derived AR models, the
proposed approach provides promising results to
capture the quasi-periodic feature of signals.

The algorithm has been exercised first on deep spindle
and provides atime/frequency analysis of the signal.

In the field of speech enhancement, a harmonic model
is considered. The next step consists in defining and
deriving an algorithm able to find for each frame both
the adapted number of sine components and the initial
values of the variance of the driving processes. Those
preliminary results prefigure a global EM-based
algorithm with a voiced/unvoiced decision. When the
unvoiced decision is made, a stochastic AR model [3]
is considered whereas harmonic model is used for
voiced decision.
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