
Linear Colour-Dependent Image Filtering based on Vector
Decomposition

Stephen J. Sangwine & Barnabas N. Gatsheni
University of Essex

Department of Electronic Systems Engineering
Wivenhoe Park, Colchester, CO4 3SQ, UK

Email: s.sangwine@ieee.org , bgatsh@essex.ac.uk

Todd A. Ell
5620 Oak View Court,

Savage, Minnesota, USA
Email: t.ell@ieee.org

ABSTRACT

This paper presents a new method for devising linear colour-
dependent filters based on decomposition of an image into
components parallel and perpendicular to a chosen direction
in colour space. The components may be separately filtered
with linear filters and added to produce an overall result. The
paper demonstrates this approach with a colour-selective av-
erager, and then shows that the filter may be implemented
without the parallel/perpendicular decomposition by adding
the output of two filters, derived in the paper. The approach
is based on quaternion algebra and convolution.

1 Introduction

Linear filtering of colour images is a very recent develop-
ment. The first linear colour filter was published by Sang-
wine [1] and was a colour edge detector based on convolution
with hypercomplex masks. Two years later, Evans, Sang-
wine and Ell published two papers [2, 3], again based on
hypercomplex convolution, but this time providing colour-
sensitive smoothing or edge detection. The approach taken in
these two papers was somewhatad-hocand did not suggest
a more general approach. In this paper, we present a general
approach to colour-sensitive linear filtering, and for the first
time we show how a hypercomplex linear vector filter may
be derived from first principles.

The work presented here is part of a larger project to study
hypercomplex filtering of colour images. The particular filter
presented in this paper is a very simple colour-selective aver-
ager, but the principle demonstrated is likely to lead to more
sophisticated filters. Throughout this paper, colour image
pixels are represented by hypercomplex numbers (quater-
nions). The quaternion mathematical relations relevant to the
work contained in this paper are included in Appendix A.

Our aim in the work presented in this paper is to develop
methods for the design of colour-sensitive linear vector fil-
ters applicable to colour images. Our approach is based on
quaternion algebra and convolution with quaternion-valued
(or hypercomplex) masks and composition of a linear vector
filter from linear operations, in classic fashion. Convolution
with a quaternion-valued mask is a linear operation, and so is
the decomposition of an image into images with pixels par-
allel and perpendicular to a chosen direction in colour space.
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Figure 1: Filtering with two linear filters F1 and F2 operating
on separated parallel and perpendicular image components.

2 The Colour-Selective Filter

A colour-selective filter may be implemented by first decom-
posing the image into components parallel to and perpendic-
ular to a chosen direction in colour space. For example, to
make a filter sensitive to cyan, we could decompose the im-
age pixel-by-pixel into an image with pixels parallel to the
cyan direction, and an image with pixels perpendicular to the
cyan direction. These two images, if added pixel-by-pixel,
will reconstruct the original image. This decomposition is
exactly equivalent to resolving the pixel vectors into the cho-
sen direction, and subtracting the resolved vectors from the
original pixels.

Once we have separated the image into two components,
parallel to and perpendicular to the chosen colour direction,
we are free to filter either or both of the separated images.
Provided the filtering is linear, we may then recombine the
filtered separated images to produce a result. The process is
shown diagrammatically in Figure 1.

Our objective, not so far realised, is to combine all these
steps intoonehypercomplex convolution as shown in Figure
2.

The scheme in Figure 3 was achieved through studying a
particular case where F1 in Figure 1 is a scalar averager and
F2 is an all-pass filter, as shown in Figure 4. For this par-
ticular case we have obtained equivalent filters F3 and F4 as
shown in Figure 3, thus merging the parallel/perpendicular
decomposition step into the convolutions. It turns out that
one of the convolutions is a scalar convolution, and the other
requires a quaternion convolution, but this may not be gen-
eral. In the next section we present the algebraic derivation
of the F3 and F4 filters.



F --

Figure 2: This is a single filter which must perform the same
function as the filters in Figure 1 and Figure 3.
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Figure 3: Filtering with no decomposition of the image into
parallel and perpendicular components.

3 An example Filter

The parallelν‖ and perpendicular componentν⊥ of each
pixel is given by [4]:

ν‖ =
1
2

(ν − µνµ), ν⊥ =
1
2

(ν + µνµ) (1)

whereµ andν represent the axis for the chosen colour direc-
tion and the pixel value respectively.

Only the parallel component in Figure 4 was filtered using
a 5 × 5 averager with mask coefficients of125 . The (1 × 1)
all-pass filter had a single equivalent coefficient with a value
of 1.

The coefficients from a5×5 mask were combined with the
expressions given in (1) to obtain the equations shown in Ta-
ble 1. These equations were then implemented as part of the
convolutions F3 and F4 in Figure 3 where the perpendicular/
parallel separation has been eliminated.
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Simplifying the expression of the central pixel in Table
1 gives (2). The second term in (2) on the RHS is a pure
quaternion.

The relations (1) and (2) and in Table 1 will be used in
this discussion. SinceN = 5 from using the5 × 5 mask
for the averager, on LHS of (2) theν‖ is multiplied by 1

N2

and hence its coefficients are altered. In the case of an all-
pass filter,N = 1 thus the relation forν⊥ in (2) is unaltered.

Averager

�
�
��

⊥

‖

-

- l-
6

?

Figure 4: Colour-sensitive averaging filter.
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Table 2: F3 mask.
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Table 3: F4: is a left mask (The right mask has identical
values negated)

The centre and outer pixel values for F3 in Figure 3 are13
25

and 1
50 respectively whereas for F4 they are2

√
3

5 [ ]2
√

3
5 µ and

1
5
√

2 [ ] 1
5
√

2 µ respectively. The respective masks are shown
as Table 3 and Table 2. Table 3 is the left quaternion (its
conjugate gives the right mask) mask.

4 Experimental results

We have sampled the tulips image shown in Figure 5 to ob-
tain colours corresponding to the red of the petals, the green
of the leaves and the yellow inside the flower. The RGB val-
ues were recorded as shown in Table 4. For a 24-bit colour
image the origin has coordinates (127.5, 127.5, 127.5). Thus
the colour component values have been reduced by 127.5 in
order to conform to the RGB colour space as illustrated in
Table 5. We use offset 8-bit RGB space in which (0,0,0) rep-
resents mid-grey. The image was decomposed into compo-

RGB values
R G B

green leaves 60 125 125
colours red petals 225 90 90

yellow 230 210 0

Table 4: RGB values read from tulips image

nents parallel and perpendicular to a chosen colour direction
(axisµ). The5× 5 averager with entries of1N2 was used for
filtering the image in the parallel direction. N is the size of
the mask. This procedure is also illustrated by Figure 4.

The procedure for performing this filtering was as follows:

• convert pixel values to offset RGB space.

• select a colour (µ).

• split the image into the perpendicular and parallel com-
ponents (specify the colour direction for the decompo-
sition).
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Table 1:5× 5 colour-sensitive averaging filter mask

RGB values
R G B

green leaves -67.5 -2.5 -2.5
colours red petals 97.5 -37.5 -37.5

yellow 102.5 82.5 -127.5

Table 5: The values after subtracting 127.5 from each value
in Table 4

• average the parallel component.

• combine the filtered parallel component with the unfil-
tered perpendicular component.

• add offset, to obtain normal RGB image.

The results from this experiment (splitting, filtering and
recombining) are shown in Figure 6.

• for the red petals direction, the observed colour is a
blurred red colour on the red petal edges

• for the green direction, the result is a blurred green
colour on the leaves

• for the yellow direction, the result is a blurred yellow
colour on the yellow inside of the flower.

The results from the “difference images” are shown on the
bottom row in Figure 6 were as follows: In the red colour di-
rection, colours observed were cyan and red, in the yellow
colour direction the colours observed were yellow and ma-
genta and on the green colour direction, the colour observed
was red. It can be noted that each result gives that particular
colour and its opponent colour and thus they conform to the
RGB colour space representation.

These results are dependent on the order of the difference.
Here the filtered image was subtracted from the original im-
age, otherwise if the original image had been subtracted from
the filtered version, then the non-zero areas should have been
identical to the filter axis rather than opponent colours.

The filtering of a parallel component of a quaternion im-
age decomposed into two orthogonal components has been
successfully accomplished.

We have done the equivalent filtering with the scheme of
Figure 3 and obtained identical results, thus verifying the
mathematics in (1) and (2). The scheme of Figure 3 is simple
to implement as it requires no decomposition step.

Figure 5: Original tulips image

5 Conclusion

Colour image filtering applied to one of the two orthogonal
components obtained from the decomposition of a quater-
nion image has been developed. Good results were obtained
for each colour direction filtered. As a consequence, a range
of colours defined in the colour space by their vectors can be
filtered. In terms of further work, replacing2 filters discussed
above by just a single filter is attractive. The filter of Figure
3 is a quaternion algebraic convolution without the need for
parallel/perpendicular decomposition. This is a significant
step in linear vector filtering of colour images.
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A Appendix

This appendix presents key quaternion mathematical rela-
tions. The hypercomplex numbers discovered by Hamilton
[5] in 1843 are viewed as a generalisation of the complex
numbers. A quaternionq is given by:

q = w + xi+ yj + zk (3)

wherew, x, y andz are real, andi, j andk are complex
operators bound by the following relations:

ij = k jk = i ki = j

ji = −k kj = −i ik = −j
(4)

A prominent feature of the quaternions is their non-
commutative property and as a consequence, convolution us-
ing quaternions requires both the right and left convolution
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Figure 6: From left to right on the top row the images are filtered in the red, yellow and green colour direction respectively. From
left to right on the bottom row are the “difference images” between the original (Figure 5) and respective filtered images in the
top row.

mask (one mask on the left and another mask on the right side
of the image). Non-commutativity is characteristic of vec-
tors and it is also true for the hypercomplex numbers whose
3 imaginary parts form a vector. In terms of the RGB colour
space, x, y and z represent red, green and blue components
of a pixel respectively.

The magnitude of the pure quaternion (scalar part is zero)
can be used as a measure of the distance between the colour
and mid-grey [6]. Mid-grey is located at the origin of the
hypercomplex space. Normalising a quaternion representa-
tion of a colour discards distance information, but retains the
orientation information of the colour relative to mid-grey.

A unit pure quaternion (vector) is obtained from an arbi-
trary vector by:

µ =
ix+ jy + kz√
x2 + y2 + z2

(5)
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