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Abstract— In this paper a simple and robust combination
of architecture and training strategy is proposed for a ra-
dial basis function network (RBFN). The proposed network
uses a normalised Gaussian kernel architecture with kernel
centres randomly selected from a training data set. The out-
put layer weights are adapted using the numerically robust
Householder transform. The application of this normalised
radial basis function network (NRBFN) to the prediction
of chaotic signals is reported. NRBFN’s are shown to per-
form better than un-normalised equivalent networks for the
task of chaotic signal prediction. Chaotic signal prediction
is also used to demonstrate that a NRBFN is less sensitive
to basis function parameter selection than an equivalent un-
normalised network. Normalisation is found to be a simple
alternative to regularisation for the task of using a RBFN
to recursively predict, and thus to capture the dynamics of,
a chaotic signal corrupted by additive white Gaussian noise.

I. INTRODUCTION

Normalised radial basis function networks (NRBFN’s)
were first introduced by Moody and Darken [1] in 1989.
Since then there has been a mixed response towards
NRBFN’s in the literature. Indeed, one of the motivating
forces for this paper is to provide detailed results from a
number of simulation studies, which can be used to come to
a more positive opinion on NRBFN’s. The specific interest
for this work is in applying a NRBFN to the prediction of
chaotic signals.

In its favour the NRBFN has been theoretically proven
to be capable of universal approximation in a satisfactory
sense [2], it has been shown to have good generalisation
properties [2], [3], and it has been said that the NRBFN is
less affected by a poor choice of basis function parameters
than an un-normalised network [4], [5], [3]. A possible ex-
planation for why NRBFN’s can offer advantages with re-
spect to un-normalised radial basis function networks (UN-
RBFN’s) could be associated with the fact that a NRBFN
can exhibit both localised and non-localised behaviour [6],
whereas an UNRBFN only features localised behaviour.

Despite the above positive aspects of NRBFN’s, certain
disadvantages have also been reported. For example, Cha
and Kassam [6] found that although a NRBFN had a bet-
ter interpolation capability than its un-normalised coun-
terpart, they discovered it was rather difficult to adapt the
basis function parameters of a NRBFN using the stochastic
gradient (SG) nonlinear optimisation technique. However,
whilst this can lead to better solutions than using a linear
optimisation technique, there is not a guarantee of this,
and nonlinear optimisation is more time consuming. Fur-
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thermore, Cha and Kassam found that the SG algorithm
often yields a sub-optimal solution. Shorten and Murray-
Smith [4] warned against what they called “side-effects”
of normalisation. Examples of these side-effects include
basis function reactivation and shifts in basis function max-
ima. However, such side-effects do not necessarily mean
NRBFN’s are not, for example, good classifiers or function
approximators. Indeed, they may even be part of the ex-
planation why a NRBFN has been shown to be less sens-
itive to poor basis function parameter selection, than an
UNRBFN. Shorten and Murray-Smith showed an example
of function approximation using a NRBFN and also an UN-
RBFN. They demonstrated that the reactivation and max-
ima shift side-effects were present in the NRBFN. However,
although they did not give numerical values for the relat-
ive performance of each network, graphically it appeared
that the NRBFN achieved a better fit to the target func-
tion than the UNRBFN. If indeed this is the case it would
support the view that such side-effects do not have a negat-
ive impact on network performance, and they may even be
part of the explanation behind any performance benefits
which normalisation brings. More recent results [3] have
also shown a NRBFN to outperform an UNRBFN for a
function approximation task.

In this paper a simple and robust combination of ar-
chitecture and training strategy is proposed for a RBFN.
The proposed network uses a normalised Gaussian kernel
architecture with kernel centres randomly selected from a
training data set. The output layer weights are adapted
using the numerically robust Householder transform [7],
[8]. The use of a nonlinear optimisation technique was not
considered due to the disadvantages of such an approach

already highlighted above.

IT. RADIAL BASIS FUNCTION NETWORKS

A radial basis function network (RBFN) [12] is linear
in its parameters, therefore once suitable basis function
parameters have been chosen it can be trained using a fast
linear supervised training scheme. In this section the struc-
ture of a RBFN is described, an approach to basis function
parameter selection is explained, and a least squares (LS)
adaptation technique for training the output layer weights
is discussed. A RBFN with M kernels, or hidden units, has
the following overall response function,

M
f(x(n)) = Zwi@'(n) (1)

where x(n) is a vector in the input space of the RBFN,
¢;(n) is the response function of the i** kernel, and w; is the



weight associated with the i** kernel. The most common
nonlinear kernel function used in RBFN’s is the Gaussian
function,

_ _ 12
®i(n) = exp [M] ,1i=1,2,.M  (2)
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where ||.|| is the Euclidean distance measure, ¢; is the po-

sition of the #*® kernel’s centre in the input space of the
RBFN, and o; is known as the width of the i** kernel.
Two different Gaussian RBFN architectures were con-
sidered for the prediction analysis reported in this paper.
Firstly, a RBFN which used the Gaussian kernel function
in equation (2) was considered. This will be referred to
from now on as the un-normalised RBFN or UNRBFN.
Secondly, a RBFN which used the normalised Gaussian
kernel function [1] was considered. This will be referred
to from now on as the normalised RBFN or NRBFN. The
normalised Gaussian kernel function is defined below,

exp [_‘||x(;3;CiII2]

M —||x(n)=c;j||2
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¢i(n) = (3)

where ¢;(n) is the i'" normalised kernel output. This is
very similar to equation (2), except here the kernel output
is divided by the sum of all the kernel outputs. Therefore,
the outputs of all the kernels add up to one.

The method used to select the centres of the RBFN
will be referred to as the randomly selected centres (RSC)
technique. It involves choosing centres from the training
data at random. A uniform random number generator [23]
(RNG) is used to pick points at random from the training
data. These points are used as the starting elements of
the centres. For example if the RBFN has an embedding
dimension of N (i.e. N input nodes), and an embedding
delay of 1 sample (i.e. a 1 sample delay between each in-
put node), then a starting element is picked, along with the
next N — 1 successive data points, to obtain centres in the
RBFN’s N-dimensional input space. This centres selection
technique was implemented so that, given two RBFN’s with
the same embedding dimension, embedding delay, training
length, and training data set, but one with M; kernels, and
the other with My kernels, where M- > My, the set of M,
centres is a subset of the M5 centres.

A universal kernel width was used (i.e. the same width
for each kernel): ¢; = o,i = 1,2,..., M. The following

equation was used to calculate the width o,

dme
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where d,y. is the maximum Euclidean distance between any
2 centres, and M is the number of kernels. Such a choice for
o in an UNRBFN ensures that the Gaussian kernel func-
tions are neither too peaked nor too flat [17]. Once the
centres and widths of the M kernel functions have been se-
lected, the M output layer weights w;, 7 = 1,2,.., M, can be
trained using a supervised linear least squares technique.

The Householder transform [7], [8], which is numerically
robust as it avoids estimating the inverse of the autocor-
relation function (ACF) matrix directly, was used to train
the output layer weights of the RBFN.

ITT. NONLINEAR PREDICTION

Given a vector x(n), from a time series {x(n)}, which
has an embedding dimension N and an embedding delay
T, l.€.

x(n) = [z(n),z(n—7),..,2(n— (N = 1)7)]T  (5)

an estimate &(n + 1) of the next data sample z(n + 1) is
formed by constructing a nonlinear predictor function f()
where,

B(n+1) = f(x(n) (6)
Equation (6) is for 1-step ahead prediction, but this could
be generalised for K-step ahead prediction, z.e.

t(n+ K) = frx(x(n)) (7)

where fg (x(n)) would, in general, represent a different pre-
dictor function for each value of K.

A problem that must be addressed when using a RBFN
to approximate the predictor function fk (x(n)) is that of
over-fitting. Over-fitting [21] occurs when a model, (i.e.
RBFN), is too complex and fits to spurious quirks (i.e.
noise) in the data. This means that the model will per-
form less well on non-training data than on training data.
To avoid over-fitting a technique known as early-stopping
[21] was used. The data was divided into three equal sets
of length Y samples in each: a training set (the first YV
samples), and 2 non-training sets; a testing set (the next ¥’
samples), and a validation set (the next again ¥ samples).
By monitoring the predictor’s performance on the non-
training data, the problem of over-fitting can be avoided:
if the non-training error started to increase, then the pre-
dictor’s training can be stopped. The prediction perform-
ance measure that has been used for this paper is the nor-
malised mean square error (NMSE).

In order to choose suitable embedding parameters and
thus to design a NLP for a chaotic signal, Haykin and
Li [25] pursued the idea of dynamical reconstruction from
Takens’ embedding theorem [26], [27]. Effectively, Takens’
theorem states that dynamical reconstruction of a system
can be achieved using a single dimensional subspace of the
actual system. Reconstruction of the original signal is pos-
sible provided that,

N>2d+1 (8)

where d is the order, or dimension, of the dynamical sys-
tem, which can be estimated using the maximum likelihood
correlation dimension [28]. It should be noted that equa-
tion (8) is a sufficient, but not necessary condition for dy-
namical reconstruction [11]. Takens’ embedding theorem
actually permits the use of any 7 as long as the observed
time series is infinitely long. Unfortunately, in practice
there is access only to finite data sequences. Therefore, 7



should be chosen so that it is large enough for z(t) and
z(t — 7) to be independent enough of each other, so that
they serve as (independent) coordinates of the reconstruc-
tion space, but, not so independent as to have no correlation
with each other: if the gap is too large, chaos makes z(t)
and (¢ —7) disconnected, or statistically independent [29].

Haykin and Ti [25] used a method for estimating a suit-
able 7 based on the definition of generalised dimensions of a
dynamical system [30]. The approach adopted herein was
to use the average mutual information [29]. Tt has been
suggested [31] that the optimum embedding delay (for dy-
namical reconstruction) is at the first minimum of the av-
erage mutual information. In order to achieve dynamical
reconstruction using a NLP, Haykin and Li actually ad-
vocated using embedding parameters somewhat different
to those which follow on from Takens’ embedding theorem:
i.e. using equation (8) to select the embedding dimension,
and selecting 7 using, for example, the first minimum of
the average mutual information. The embedding dimen-
sion that they suggested using to reconstruct the dynamics
of a chaotic signal of dimension d is given as,

where Dp is an estimate! of d, and 7 is estimated using,
for example, the first minimum of the average mutual in-
formation. Haykin and L1 used an embedding delay of 1
sample together with this choice of embedding dimension.

IV. NONLINEAR PREDICTION OF CHAOTIC SIGNALS

In this section it will be demonstrated that to design
the best NLP for a chaotic signal, in terms of NMSE, us-
ing Takens” embedding theorem criteria (or indeed Haykin
and Li’s criteria) to select the embedding parameters is not
the most effective approach. Instead, as suggested by Cas-
dagli [9], the best technique for selecting the embedding
parameters is to use a trial and error approach. That is to
say, N and 7 should be varied until the minimum NMSE
is achieved.

According to the discussion relating to Takens’ embed-
ding theorem in section 3 and the maximum likelithood
correlation dimension estimate for the Lorenz data given
above, a suitable embedding dimension for a nonlinear pre-
dictor of Lorenz data would be 6 or greater. Similarly, from
the discussion relating to Takens’ embedding theorem in
section 3, a suitable embedding delay for a Lorenz pre-
dictor would be 3. However, it has been found, in terms of
NMSE;, that for a 1-step ahead NLP the optimum embed-
ding dimension is 3, and the optimum embedding delay 1s 1
sample. This is illustrated in Figure 1, which shows Lorenz
prediction results for a NRBFN predictor (NRBFNP), and
an UNRBFN predictor (UNRBFNP), for various values of
embedding dimension in Figure 1(a), and various values
of embedding delay in Figure 1(b). Linear prediction res-
ults are shown as a performance benchmark. As can be
seen from Figure 1, the NRBFNP consistently performed
as well as or better than the UNRBFNP. In particular, for

1 Estimated using for example the correlation dimension.

an embedding dimension of 3 and an embedding delay of
1 sample, the NRBFNP outperformed the UNRBFNP by
more than 10dB. However, these results do not take into
consideration the effect basis function parameter selection
has on the performance of a radial basis function network
predictor (RBFNP). The results discussed above were ob-
tained using centres picked at random from the training
data, as described in section 2, and the kernel width used
was calculated as described in equation (4). Tt has been
found that kernel width has a critical impact on the per-
formance of a RBFNP, as will now be discussed.
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Fig. 1. 1-step ahead prediction of Lorenz data using a NRBFNP and
an UNRBFNP, each with 100 kernels, for (a) different values of
embedding dimension with an embedding delay of 1 sample, and
for (b) different values of embedding delay with an embedding di-
mension of 3. Linear 1-step ahead prediction results are shown
for a 30 tap LP, with a 1 sample delay between each tap. Val-
idation data set results are shown for each predictor, and the
training length used in each case was 6000 samples.

Figure 2 shows Lorenz prediction results for a NRBFNP
and an UNRBFNP, using different sets of kernel centres.
A different random number generator seed corresponds to
a different sequence of uniform random numbers, and thus
to a different set of centres, see section 3. For each set
of centres, a new set of RBFNP output layer weights was
obtained. The same set of centres were used by the NRB-
FNP as for the UNRBFNP, for a given random number
generator seed. The results in Figure 2(a) are for a kernel
width calculated as in equation (4), those in Figure 2(b)
are for twice this value of kernel width. A separate set of
output layer weights was obtained for each value of kernel
width. Observing the results in Figure 2, the importance
of kernel width selection is highlighted. Focusing on the



results in Figure 2(a) for the smaller of the 2 kernel widths
considered it can be seen that the NRBFNP performed bet-
ter in terms of NMSE than the UNRBFNP, and was less
sensitive to changes in the position of the kernel centres.
However, by using a larger kernel width the difference in
NMSE performance was slightly reversed, and the differ-
ence in sensitivity to kernel centres selection vanished.
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Fig. 2. 1-step ahead RBFN prediction of Lorenz data using different
sets of kernel centres with (a) a kernel width calculated using
equation (4), and (b) a kernel width twice the value of that used
in (a). An embedding dimension of 3, 100 kernels, an embedding
delay of 1 sample, and a training length of 10,000 samples were
used by the RBFNP’s. Validation data set results are shown.

To further investigate the critical impact width selection
can have on the performance of a RBFNP, Lorenz predic-
tion results are shown in Figure 3 for a range of kernel
widths. Different kernel widths were obtained as follows:
a kernel width was calculated using equation (4), and this
was multiplied by different width multiplication factors.
The results in Figure 3 show that even although the UNRB-
FNP performed marginally (<1dB) better than the NRB-
FNP around a multiplication factor of 2, the NRBFNP
was less sensitive to kernel width selection as its NMSE
performance did not vary over as large a range as that for
the UNRBFNP.

The importance of kernel width selection for RBFNP’s
is now further demonstrated using 2 other chaotic time
series: Tkeda map data [29] and laser data [30]. The res-
ults in Figures 3 and 4 show that for each signal analysed
the NRBFNP is less sensitive to kernel width selection
than the UNRBFNP. This result supports the discussion
on NRBFN’s presented by others [4], [5], [3]. The results
also demonstrate that for each signal analysed the best
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Fig. 3. 1-step ahead RBFN prediction of Lorenz data using different
kernel widths for a fized set of kernel centres. The kernel width
was calculated wsing equation (4), and this was multiplied by
different width multiplication factors. A separate set of output
layer weights was obtained for each kernel width. An embedding
dimension of 3, 100 kernels, an embedding delay of 1 sample, and
a training length of 10,000 samples were used by the RBFNP’s.
Validation data set results are shown.

prediction performance is achieved using different width
multiplication factors, so there appears to be no optimal
choice for the kernel width multiplication factor for the 3
signals considered: for any one of these signals the width
which resulted in the best prediction performance would
need to be searched for. For each case analysed in Fig-
ures 3 and 4 the NRBFNP consistently performed better
than the UNRBFNP up to and including the point where
the NMSE started to degrade with increasing kernel width,
except for the Lorenz data. For the case of the Lorenz data
the NRBFNP performed better than the UNRBFNP up to
a width multiplication factor of 1.5. The UNRBFNP only
performed marginally better (<1dB) than the NRBFNP
between width multiplication factors of 1.5 and 1.6 before
the NMSE started to degrade with increasing kernel width.
The above results demonstrate that a NRBFNP is better
than an UNRBFNP for predicting the chaotic signals con-
sidered.

V. RECURSIVE PREDICTION

As already discussed in section 3, Haykin and Li [25] pur-
sued the idea of dynamical reconstruction when it came to
choosing suitable embedding parameters for a NLP of a
chaotic signal. They also advocated using recursive pre-
diction to test the generalisation properties of their NLP’s.
Recursive prediction is performed by first of all training a
predictor to obtain the mapping in equation (6). Then the
trained predictor is given one input vector from the avail-
able data. From then on the output of the predictor is fed
back to its input, and the system becomes autonomous.
Haykin and Principe [11] suggested using recursive predic-
tion as a pragmatic approach for testing how well a 1-step
ahead predictor had managed to model the underlying dy-
namics of a chaotic signal. If the predictor is successful at
modelling the underlying dynamics of the chaotic signal,
then the predictor’s output, in recursive prediction mode,
should satisfy the two conditions [11] (i) short term beha-
viour - the reconstructed signal should closely follow the
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Fig. 4. 1-step ahead RBFN prediction of (a) Tkeda map data and (b)
laser data, using different kernel widths for a fized set of kernel
centres. The kernel width was calculated using equation (4), and
this was multiplied by different width multiplication factors. A
separate set of weights was obtained for each kernel width. An
embedding dimension of 4, 100 kernels, and an embedding delay
of 1 sample were used for the prediction of both time series. A
training length of 10,000 samples was used for the Ikeda map,
and one of 4,000 samples was used for the laser data. Validation
data set results are shown.

original time series until the prediction horizon; (ii) long
term behaviour - the dynamic invariants of the reconstruc-
ted signal should match those of the original.

Haykin and Principe [11] investigated whether it was
possible for a RBFNP to recursively predict and capture
the underlying dynamics of chaotic Lorenz data corrupted
by additive white Gaussian noise. They reported that this
was not possible without the use of regularisation [17], [10].

The signal to noise ratio (SNR),

o-zi nal
SNR = 10log; | £ (10)

9 . . . . .
where ;. is the variance of the signal of interest (in

. 2
this case the Lorenz data), and o ..,

noise, used by Haykin and Principe was 25dB. The primary
aim of this section is to investigate if a NRBFNP is able to
recursively predict (and also to capture the underlying dy-

1s the variance of the

namics of) noisy Lorenz data, as normalisation is simpler
to implement than regularisation. Of additional interest
was an investigation into the relationship between a NLP’s
ability to capture the underlying dynamics of a chaotic
signal and the NMSE performance of that NLP: in other
words, would the network which learnt the underlying dy-

namics also have the best NMSE prediction performance?

Finally, also considered in this section is a comparison of
using the 2 different criteria discussed in section 3 for dy-
namical reconstruction: the criteria which follows on from
Takens’ embedding theorem, equation (8), and Haykin and
Li’s criteria, equation (9).

To investigate if a NRBFNP could be used to recursively
predict noisy Lorenz data, white Gaussian noise was added
to the Lorenz data described in section 4, the SNR was
25dB. Haykin and Principe used the following parameters
in their regularised RBFNP: an embedding dimension of
20, an embedding delay of 1 sample, and 400 kernels. The
selection of the embedding parameters was done in accord-
ance with Haykin and Li’s criteria, as given in equation
(9). A NRBFNP with the same parameters was used to
recursively predict the noisy Lorenz data. It was also in-
vestigated whether it would be possible to use a NRBFNP
with a smaller embedding dimension, which was selected
using Takens’ embedding theorem, to recursively predict
the data.
estimate for the noisy Lorenz data was estimated, using
35,000 samples, to be 2.38. This gives a minimum em-
bedding dimension of 6, for dynamical reconstruction us-
ing Takens’ theorem. The mutual information plot for the
noisy Lorenz data revealed that the first minimum was at a
delay of 3 samples. A NRBFNP with an embedding dimen-
sion of 7, an embedding delay of 3 samples, and 400 kernels
was also used to recursively predict the noisy Lorenz data.

A maximum likelihood correlation dimension

In addition, because of the good prediction results (see sec-
tion 4) achieved using an embedding delay of 1 sample, a
NRBFNP with an embedding dimension of 7 and 400 ker-
nels was used with an embedding delay of 1 sample. Re-
cursive prediction results are shown for all three networks
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Fig. 5. Recursive prediction of noisy Lorenz data (SNR=25dB) using
(a) a« NRBFNP with an embedding dimension of 7 and embedding
delay of 1 sample, (b) a NRBFNP with an embedding dimension
of 7 and embedding delay of 3 samples, and (¢) « NRBFNP with
an embedding dimension of 20 and embedding delay of 1 sample.
Each NRBFNP used 400 kernels and a training length of 2000
samples. In each case the recursive prediction was initialised
with the first vector from the testing data set.

As can be seen from Figure 5(a) the NRBFNP with an
embedding dimension of 7 and an embedding delay of 1
sample did not appear to capture much of the original sig-
nal’s detail after the prediction horizon, which was approx-
imately 50 samples: after 50 samples the NRBFNP’s out-
put merely seemed to oscillate between a positive value and
a negative value. In contrast, both of the other NRBFNP’s
managed to capture the 3 and 4 peak detail observable in
the original signal after the prediction horizon, which was
approximately 20 samples for each of these NRBFNP’s. To
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try to obtain a more quantitative idea of how each network
performed, the maximum likelihood correlation dimension
was used as follows. Each predictor network was trained
using a training length of 2000 samples, and was initial-
ised with the first vector from the testing data set. Each
NRBFNP was then used to generate 35,000 samples, and
the maximum likelihood correlation dimension was estim-
ated for each data set, as tabulated in Table I. Training,
testing, and validation data set NMSE’s are also shown for

each NRBFNP, for a training length of 2000 samples.

N | K | Correlation | Training | Testing | Validation
dimension NMSE NMSE | NMSE
estimate [dB] [dB] [dB]

7 1 2.03 -23.63 -20.97 -20.85

7 2.28 -21.59 -19.16 -17.92

20 (1 2.25 -21.43 -19.64 -18.78

TABLE I

RECURSIVE PREDICTION OF NOISY LORENZ DATA (SNR=25DB),
usinG NRBFNP'’s.

As can be seen from Table T the NRBFNP with an
embedding dimension of 7 and an embedding delay of 1
sample produced the recursively predicted time series with
the worst correlation dimension estimate with respect to
the 2.38 value of the original noisy data. The NRBFNP
with an embedding dimension of 7 and embedding delay
of 3 samples produced the time series with the closest cor-
relation dimension estimate to that of the original time
series. This can be explained by considering the evolution
of the NRBFNP input vectors in state space. Increasing
the embedding delay has the effect of “unfolding” the at-
tractor 1n state space, which reduces the likelihood that
noise will cause any vector to erroneously evolve (or jump)
to the wrong part of the attractor. Avoiding such erro-
neous evolution eventualities results in correctly capturing
the underlying dynamics of the noisy Lorenz data. There-
fore, whilst an embedding delay of 1 sample is a better
choice for the general prediction problem, an embedding
delay of 3 samples is preferred for the recursive prediction
problem. A reason why the correlation dimension estimate
was slightly poorer for the NRBFNP with an embedding
dimension of 20, than for the NRBFNP with an embed-
ding dimension of 7 and embedding delay of 3 samples, is
that this embedding dimension is actually too large, and
as a result the additive Gaussian noise has degraded the
quality of the dynamical reconstruction [11]. Tt should also
be noted that the network which best managed to capture
the underlying dynamics was not the network with the best
NMSE values.

Owing to the critical impact kernel width was shown
to have on the performance of a 1-step ahead RBFNP, as
discussed in section 4, recursive prediction was attempted
using an UNRBFNP for a range of kernel widths. Contrary
to the work reported by Haykin and Principe [11], it was
found that an UNRBFNP was able to recursively predict
and capture the underlying dynamics of the noisy Lorenz

data for certain values of kernel width (at width multiplic-
ation factors of 3, 4, 6 and 7). However, in order to find
kernel widths which would sustain recursive prediction, a
trial and error approach would be required, as no obvious
criterion for kernel width selection. This is in contrast to
the NRBFNP which achieved dynamical reconstruction us-
ing a kernel width calculated from equation (4). Moreover,
based on the Dy estimate, the UNRBFNP was not able
to capture the underlying dynamics as well as the NRB-
FNP.

It has been demonstrated that a NRBFNP can be used,
with embedding parameters selected using the maximum
likelihood correlation dimension estimate and average mu-
tual information, to recursively predict noisy Lorenz data.
The advantage of using a NRBFNP instead of a regular-
ised RBFNP (which was the technique used by Haykin and
Principe to achieve recursive prediction) is that implement-
ing a NRBFNP is easier: in designing a regularised RBFNP
there is an additional parameter, the regularisation para-
meter, to find a suitable value for. Tt has also been shown
that Takens’ criteria for dynamical reconstruction is a bet-
ter choice than Haykin and Li’s criteria, as not only does
it result in the choice of a smaller embedding dimension, it
also results in designing a network which has been shown
to more accurately model the underlying dynamics of a
chaotic time series. It was noted that designing a NLP to
capture the underlying dynamics of a chaotic signal is not
always consistent with obtaining the best NMSE prediction
performance. Finally, it was shown that an UNRBFNP was
able to recursively predict the noisy Lorenz data for certain
kernel width values. However, determining suitable kernel
widths for the UNRBFNP to achieve this was found to be
a trial and error procedure, in contrast to the kernel width
selection technique for the NRBFNP. Furthermore, based
on Dyrr, estimates, the UNRBFNP was not able to capture
the underlying dynamics as well as the NRBFNP.

VI. CONCLUSIONS

The normalised RBFN has been re-examined. The ef-
fective and robust nature of the structure and training
strategy proposed here was demonstrated using the prob-
lem of chaotic signal prediction. It was shown that nor-
malisation can be used to make a RBFN less sensitive to
kernel width selection. Normalisation was shown to be a
simple and effective alternative to regularisation for the
task of recursively predicting and capturing the dynam-
ics of a chaotic signal corrupted by additive white noise.
Moreover, Takens’ embedding criteria were shown to be
preferred to that of Haykin and Li’s, as they resulted in
both a smaller embedding dimension, and a NRBFN which
was able to more accurately model the underlying dynam-
ics of a chaotic signal. Tt was established that designing a
NLP to capture the underlying dynamics of a chaotic signal
is not always consistent with obtaining the best NMSE pre-
diction performance. To conclude, the above results point
towards the NRBFN being a useful tool for the processing
of chaotic signals. Furthermore, this work has attempted
to address some of the concerns raised about NRBFN’s in
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