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ABSTRACT

This paper addresses the problem of noise estimation in the
context of speech processing. A recently proposed quantile-
based approach to noise estimation has the merit of not re-
lying on the explicit detection of speech, non-speech bound-
aries. Here this approach is extended to both time and fre-
quency. The resultant time-frequency quantile-based noise
estimation is shown to give superior ASR performance.
Results on the Aurora 2 Distributed Speech Recognition
Database show an average relative performance improvement
over the ETSI front-end baseline of 35%. The merits of the
new system include: the relatively few parameters to opti-
mise, the independence of absolute signal levels and minimal
latency, all of which assist in real-time implementations.

1 INTRODUCTION

Ambient noise remains a challenging problem in automatic
speech recognition (ASR) and with the broadening base of
ASR applications the problem has grown in importance.
Perhaps the best example of this is applications which in-
volve mobile telephony since wide variations in environmen-
tal background noise conditions are often encountered. In
this context the consequences of ambient noise are:

e direct contamination of the short-term spectral esti-
mates upon which ASR systems are based

e induced changes in the speaking style of the persons
subjected to the noise, known as the Lombard reflex [1]

Both of these consequences tend to have adverse effects
on ASR performance. The two effects are fundamentally
different and call for very different treatments.

The early work of Boll on spectral subtraction [2] is often
regarded as the root of a large amount of research on speech
enhancement and noise compensation. Many of these subse-
quent approaches are frame-based and aim to decouple the
noise component from the speech component given the ob-
served degraded speech. The original idea of Boll is based on
estimates of the noise spectrum obtained in non-speech inter-
vals. Then during speech intervals the estimate is subtracted
from the degraded speech spectrum to give a new spectrum,
which is then reverted to the time domain to give an en-
hanced speech waveform. The noise estimate is obtained
from a series of short-term spectra outside of the speech in-
terval; thus it is dynamic in that it models the immediate
surrounding noise and it can be thought of as the simplest
of noise models, namely a simple mean.

More sophisticated models of the noise are utilised by ap-
proaches such as parallel model combination (PMC) [3]. This
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Figure 1: An illustration of the differences between the in-
stantaneous noise values and mean noise estimate at 500Hz
(window period = 32ms) for car noise from the Aurora 2
database.

more sophisticated model is of potential benefit since in prac-
tise the short-term spectra tend to exhibit significant short-
term variations. This is illustrated in Figure 1 for a sin-
gle frequency bin in the region of 500Hz for 32ms windows.
The profiles are of the instantaneous rapidly varying spec-
tral component (solid line) and the associated mean (dashed
line). It is the instantaneous value that is sought for spectral
compensation since these represent the noise at that time;
the mean value is the best estimate with the simple mean
approach. This raises the question of how to obtain a model
of the noise spectrum that is an improvement over the simple
short-term mean.

Following the work of Berouti et al [4], Lockwood and
Boudy address this question in the context of ASR [5] and
put forward parameters extending the spectral subtraction
approach, using ASR performance as the final cost function.
The key parameters control noise over-estimation and noise
floors. A review of related work is provided by [6]. It is in-
teresting to note that this early work on spectral subtraction
remains the basis for many approaches and provides a pop-
ular benchmark against which to judge new developments.
See for example [7].

Of particular interest here is the appealingly named har-
monic tunnelling approach [8]. The basis of this approach
is to obtain estimates of the instantaneous noise from neigh-
bouring non-speech regions, not simply in time (as is the
case for the original Boll approach) but also in frequency.
In other words when considering a given frame containing
degraded speech, the idea is to consider lateral frequency
bins where speech is deemed to be absent giving a time and



frequency approach to noise estimation. The harmonic tun-
nelling principle uses pitch harmonics to aid in the speech,
non-speech decision. In this paper the idea of time and fre-
quency estimates is investigated with an emphasis on how
the values at adjacent frequencies and times are derived and
combined to form the noise estimate using the quantile-based
noise estimation (QBNE) approach [9].

The remainder of this paper is organised as follows. In
Section 2 a brief description of the original quantile-based
approach is given. In Section 3 the proposals for T-F QBNE
are presented. A more detailed description at the imple-
mentation level of both original QBNE and T-F QBNE with
details of the noise subtraction framework and experimental
database is described in Section 4. Experimental results are
reported in Section 5 with our conclusions in Section 6.

2 QUANTILE-BASED NOISE ESTIMATION

The main advantage of the quantile-based approach is that
an explicit speech, non-speech detector is not required. Noise
statistics are updated during non-speech and speech inter-
vals. In [10] the authors show that such an approach is com-
parable in performance to conventional noise estimation in
speech gaps even when the gaps are hand-labelled. There are
relatively few parameters to implement and all parameters
specific to the quantile are independent of absolute signal
levels.

Approaches to noise estimation that do not require explicit
speech, non-speech detection include those of Stahl et al [9],
Martin [11], Arslan et al [12], Doblinger [13] and Hirsch and
Ehrlicher [14]. In all cases noise statistics are continually
updated during non-speech and speech periods. The QBNE
approach, originally proposed in [9] is simple to implement,
has relatively few parameters to optimise, is intrinsically in-
dependent of absolute signal levels and has minimal latency.

QBNE is an extention to the histogram approach, an idea
originally put forward in [14]. The quantile-based and his-
togram approaches to noise estimation are based on two dif-
ferent statistical measures, the median and the mode. QBNE
is based on the assumption that for speech periods, frequency
bins tend not to be permanently occupied by speech. The
non-speech, speech boundaries are implicitly detected on a
per-frequency bin basis and the noise estimate is updated
throughout non-speech and speech periods.

For each frequency wj, over some period, 7', the power at
that frequency in each frame is placed in a first-in-first-out
buffer and the buffer is numerically sorted. The noise es-
timate is then taken as the middle or median value of the
buffer. Inevitably the noise estimate is affected to some de-
gree by the presence of speech. The QBNE noise estimate,
| Ny (wk, to)|? at frequency wy, and time to is defined as:

|Ng (wk, to)|* = | Nz 41(wi)|?, assuming n is odd (1)

where |N(ws)|? is a numerically sorted buffer of length n
containing values of | N(wg,t)|* wheret—Z <t < t+Z. The
process is continuous and newer instantaneous values replace
the oldest in the buffer. Taking the median of the distribu-
tion as the noise estimate for each frequency has proved to
provide a reasonable estimate of the noise and is as good
as the mean used in the conventional approach [10]. How-
ever, there remain significant differences between the noise
estimate and the actual instantaneous value. It is desirable
therefore to utilise somehow the information provided by the
quantile statistics to improve the noise estimate, so that they

@t

noise or speech

-

power

0.0 0.25 0.5 0.75 1.0
Quantile, q

Figure 2: An illustration of @:. New values entering the
quantile to the left of Q: are assumed to provide reliable
estimates of the instantaneous noise.

more accurately reflect the instantaneous statistics. To ad-
dress this problem, a new time-frequency approach is pro-
posed.

3 TIME-FREQUENCY
NOISE ESTIMATION

QUANTILE-BASED

An advantage of QBNE is that the quantile is automati-
cally normalised for each frequency bin. In fact, the position
in the quantile that the instantaneous noise value is placed
can provide an indication of the presence of speech for each
frequency. Assuming that the signal power during speech
periods is higher than during speech gaps such that the new
sample will enter the quantile above some threshold, @ as il-
lustrated in Figure 2, it is possible to estimate the likelihood
that a given bin contains a meaningful speech component
or is dominated by noise. If new values enter the quantile
to the left of @+, speech is deemed to be absent in that bin
whereas if values enter the quantile to the right of Q;, speech
is deemed to be present. This the principle of the original
QBNE along the time course.

In this paper noise estimation is improved by using Q; to
explicitely determine whether or not the the current sample
represents speech on a per-frequency bin basis. Should the
current sample be deemed not to contain speech, the noise
estimate can be set to any combination of the quantile-based
estimate and the instantaneous signal power. In this work,
the original quantile-based estimate is used. When speech is
deemed to be present, an improved estimate of the noise is
sought from lateral estimates, troughs in the spectra either
side of the current frequency. Note the quantile-based esti-
mate at wr may be degraded by the presence of the speech
at that frequency along the time course. The quantile-
based estimate, | Ny (wk,to)|?, the two lateral quantile-based
estimates, |N,(ws,t0)|? and |N,(wr,t0)|?, and the lateral
instantaneous signal powers, |N(wm,to)|> and |N(wz,to)|?
may be combined as in Equation 2 to obtain the noise esti-
mate for frequency wy at time to:
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Figure 3: Time-frequency quantile-based noise estimation
overview.
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where wy and wr denote the higher and lower frequency
troughs in the spectra either side of wy. 7y denotes a simple
scaling factor for each component of the noise estimate. In
Equation 2 the NV, indicates original QBNE while the ab-
sence of the " indicates lateral instantaneous values. Note
that when the period, T, over which the quantile is con-
structed is reduced to a single sample, | N, (w,0)|> becomes
equal to | N (wr, to)|? by Equation 1. In the preliminary work
presented here, both 4 and ~y5 are set to zero meaning that
the noise estimate for each frequency wy, is taken solely from
the remaining three quantile-based estimates at frequencies
wk, wr and wr,. This is illustrated in Figure 3. The next
stage is to use harmonic tunnelling or equivalent techniques
to provide improved instantaneous lateral estimates.

In summary the basis of the idea presented in this paper
is: take the quantile-based estimate for wy whenever and
wherever possible in both time and frequency domains. In
speech sections where the quantile-based estimate may be
degraded by the presence of speech, take the noise estimate
from a combination of the quantile-based estimate at wy and
the quantile-based estimates at the low energy regions either
side of the spectra, at wg and wr where noise is deemed to
dominate.

4 ASR EXPERIMENTS

The evaluation of QBNE and the comparison with T-F
QBNE on the Aurora 2 Distributed Speech Recognition
Database [15] are reported here. The ETSI front-end uses 13
Mel frequency cepstral coefficients including the zeroth coef-
ficient and the log energy resulting in a 14 coefficient feature
vector. The full recogniser specification is in [15]. For all
experiments, the models are trained on clean, unprocessed
speech. Testing is on artificially degraded speech with real
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Figure 4: Word recognition accuracy against SNR for the
ETSI front-end baseline, standard QBNE and T-F QBNE.

car noise added across a broad range of SNRs (clean to -5dB).
The training set was not modified for any of the experiments
performed.

The degraded signal is analysed on a frame-by-frame basis,
where frames are 32ms in duration and the frame rate is 8ms.
The FFT of each frame is computed from which the quantile
is constructed for all wg. Noise subtraction is then performed
in two separate experiments using QBNE and T-F QBNE.
In both sets of experiments the period, T, over which the
quantile is formed was fixed at 0.5 seconds, resulting in a 63
point quantile.

The spectral subtraction algorithm is constant through-
out. It is only the noise estimation algorithm that differs
between the experimental sets. A standard SNR-dependent
spectral subtraction framework as in [5] implemented as in
Equation 3:

Y (we, ) = D, t)|* = alN(wk, 1) ®3)
, 2 _ )Y (i, )1 3 [V (wk, t)[* > BID(wk, )]
[Sr " = { B|D(wk, t)|?, otherwise

where |D(w, 1), |N(w,t)|?, and |S(w,t)|? are the power
spectra of the degraded speech, noise estimate and clean
speech estimate respectively, applies.

The quantile-based estimates at wx and wy, are used when
the quantile-based estimate at wy may have been degraded
by the presence of speech. The location of wy and wy are
determined from a smoothed version of the instantaneous
spectrum. Only values of 0.1 were considered for @: cor-
responding to 10% of the noise estimate being taken solely
from the quantile-based estimate at wg. 1, 2 and 3 were
all set at 3.

5 EXPERIMENTAL RESULTS

Figure 4 illustrates the performance curves for the ETSI
front-end baseline (lower solid line) and with non-linear spec-
tral subtraction using both QBNE (middle dashed line) and
T-F QBNE (higher dotted line). For the very highest SNRs
there is little improvement over the baseline when using spec-
tral subtraction with either noise estimation technique. At
all SNRs below 15dB there is a noticeable improvement in



Performance
Approach | Accuracy | Improvement

Baseline 67% -
QBNE 2% 30%
T-F QBNE 5% 35%

Table 1: Performance in terms of average word accuracy
for each approach and the average relative improvement for
QBNE and T-F QBNE over the ETSI front-end baseline.

word recognition accuracy over the baseline, the best re-
sults being achieved with the time-frequency approach. For
the lowest SNRs, whilst both quantile-based approaches give
better results than the baseline, there is no noticeable differ-
ence between their performance.

Table 5 illustrates the improvements from each approach
of noise estimation in terms of average word accuracy and
relative improvement over the baseline across the range of
noise levels. QBNE gives an average relative performance
improvement of 30% over the baseline and T-F QBNE an
average relative performance improvement of 35% over the
baseline.

6 CONCLUSIONS

This paper presents an extension to the quantile-based noise
estimation approach to encompass both time and frequency.
For a given frequency bin, noise estimates are obtained from
the said QBNE buffer and also from lateral buffers chosen be-
cause they are in local troughs and therefore with improved
estimates of noise. Important advantages are at the imple-
mentation level and the inherent signal level independence.
Results indicate that the new time-frequency noise estima-
tion gives a performance advantage over the original QBNE
with only a small increase in implementation cost. In har-
monic tunnelling [8], the pitch of the speech is utilised to
assist in determining the equivalent higher and lower lat-
eral estimates. The next stage in this work is to incorporate
harmonic tunnelling type techniques to assist in lateral fre-
quency bin estimations.
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