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ABSTRACT

In this paper, we are interested in designing lossless
coders for a class of multispectral images. More
precisely, we consider quincunx sampled images
such as those encountered in new generation satel-
lite imaging systems. Our approach exploits both
the spatial and the spectral correlations existing in
these images by applying block-adaptive predictors.
A clustering algorithm is applied to the spectral
bands of the original image in order to compute op-
timal predictors within each group of blocks. Simu-
lation tests carried out on natural multicomponent
images show that the proposed adaptive interband
differential prediction outperforms state-of-art loss-
less coders.

1 INTRODUCTION

Multispectral images are widely used in several ap-
plications such as remote sensing, pre-press color
images, SAR imaging, .... These images are sup-
plied by several sensors operating in different spec-
tral channels. Therefore, several spectral compo-
nents are generated for a single sensed area. With
the continuous improvement of imaging systems,
increasing amounts of images are produced. Thus,
the storage of huge volumes of data is required
and data compression becomes a key component
of storage systems. A great number of coding
methods were developed for still images [1]. Gen-
erally speaking, image coding algorithms are di-
vided into two categories: lossy and lossless. With
lossless coders, the compressed data flow must al-
low the original data to be exactly recovered. Be-
cause of the constraint of perfect reconstruction,
lossless coders yield much less compact representa-
tions than the lossy ones. However, lossless coders
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are mandatory for several applications. In particu-
lar, for remote sensing, the exact reproductibility of
the images is often required since physical ground
parameters can be computed from the decoded im-
ages. According to some experts, this parameter
estimation could be affected by lossy coding algo-
rithms.

In this paper, our objective is to design efficient
predictive coders for multispectral images. More
specifically, we will be interested in quincunx sam-
pled multispectral images. Indeed, some of the
most recent sensors for satellite imaging systems
provide quincunx sampled images. For example,
the upcoming SPOT 5 satellite uses this kind of
sampling. In this context, it is important to design
appropriate reversible predictive coders taking into
account the particular characteristics of quincunx
sampling. Note that some recent works have con-
sidered quincunx lifting structures so as to design
efficient lossy coders for monoband images [2]. In
our work, the multicomponent nature of the images
we consider is taken into account by applying hy-
brid (spatial and spectral) predictive coders. Fur-
thermore, a block-adaptive strategy is adopted in
order to switch between the predictors according to
the local spatial and spectral image contents. The
remainder of this paper is organized as follows. In
Section 2, we give a short overview of differential
predictive methods dedicated to multispectral im-
ages. In Section 3, we present a new hybrid lossless
coder. Some experimental results are presented and
some conclusions are drawn in Section 4.

2 A BRIEF OVERVIEW

Usually, spatial and spectral correlations are ex-
ploited by conventional coders initially developed



for natural monoband images. Among the various
methods, differential predictive coding is probably
the most simple and efficient exact coding tech-
nique and it has been used for about fourty years.
Following a specific scanning order, the intensity of
the current pixel is predicted from the intensities of
the neighboring pixels. Then, the prediction error
is coded. There are various coders based on DPCM
techniques [3]. For instance, an Optimal Linear
Predictor (OLP) based on the previous neighbors
can be applied. The optimal coefficients in the
sense of the prediction Mean Squared Error (MSE),
are solutions of the well-known Yule-Walker equa-
tions. To circumvent the resolution of these normal
equations, it is possible to use predetermined coef-
ficients for the predictors as in the lossless mode of
the JPEG standard [4]. Similarly, the Consultative
Committee for Space Data Systems has adopted a
standard for lossless data compression, character-
ized by a prediction stage followed by Rice entropy
encoding [5]. Initially, the applied predictor was a
1D nearest-neighbor predictor (a basic purely spa-
tial predictor). An effort has been made in order
to propose other predictors (spatial, spectral or hy-
brid) [6]. Very often, the proposed predictors are
concerned with rectangularly sampled images. In
the sequel, we propose to design predictors suitable
for multispectral images resulting from a quincunz
sampling.

3 PROPOSED APPROACH

More precisely, let (%) (m,n) denote the b-th spec-
tral component of a multispectral image (b =
1,...,B) and let (by,...,bp) denote a specific per-
mutation of the B bands. For simplicity sake,
2 (m,n) is assumed to correspond to a rectangu-
larly sampled image but, due to quincunx subsam-
pling, only the pixels such that (m +n) mod 2 =0
are available and can thus be processed.

Firstly, the pixels z(®)(m,n) such that (m +
n) mod 2 = 0 are predicted using their causal
neighbors:

1) (m,n — 2)
z®(m —1,n — 1)

z®1 (m — 2, n) : (1)
z®D)(m —1,n +1)

x{")(m, n) =

Then, the interband correlation existing between
the remaining spectral bands b; (2 < i < B) is ex-
ploited by hybrid predictions based on the following

pixels:

z®:) (m,n — 2)
z®)(m —1,n —1)
z®i)(m — 2,n)
z®)(m —1,n+1) (2)
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Denoting by |[-|the truncation to the nearest
integer, the pixel intensities are exactly recov-
ered from the prediction errors z(®)(m,n) —
| (@®N)Tx®)(m,n)] (i =1,...,B), if the decoding
process starts with b; followed by b2 and so on.
Instead of coding the whole spectral band with
the same predictor, better compression is achieved
by taking into account the nonstationarity of the
input images. Two basic alternatives have al-
ready been proposed: adaptive DPCM and classi-
fied DPCM [7]. In the first one, the coefficients are
iteratively updated from the input data. In the sec-
ond one, R classes are firstly determined and then,
each class is associated with an optimized predic-
tor, applied to all the pixels of this class. It is also
possible to combine adaptive and classified predic-
tion [8]. In this paper, we use switched predictors.
More precisely, each spectral band z(® (m,n) is par-
titioned into non-overlapping blocks of size t; X t;.

These blocks are classified into Cj, regions Rgb),.

Rg’). The prediction coefficients agb), e ,ag) ap-
b b

plied in each region should reflect the local features
of the region. The chosen predictors are identified
with a binary map of size [logy([J2.; Cs)]- Ob-
viously, for each B-block, the index of this binary
vector should be sent to the decoder leading to an

overhead not exceeding:

.y

[ py logs Co]
Bint, (bpp).

0= 3)
Note that the amount of side information can be
further reduced by differential encoding. It is
worth pointing out that the classification rule is
the main issue in this approach. In the context of
exact coding, such classification/adaptation proce-
dure should minimize the overall rate [9]. How-
ever, the direct minimization of such a function
is computationally extensive and involves entropy
coders to be calculated reliably. Suboptimal strate-
gies such as the use of neural networks [10] could
be adopted but they are sensitive to local minima.



Here, we propose to minimize iteratively the MSE
rather than the bitrate according to a clustering
algorithm which is a generalization of the classical
Lloyd-Max algorithm used for vector quantizer de-
sign [11]. It is a block-based training algorithm sim-
ilar to the classified adaptive predictor described in
[12]. The clustering algorithm proceeds as follows.

1. The prediction coefficients are initially set to
some default values.

2. For the given set of predictors, the blocks of
band b are classified into one of the C}, decision
regions so as to minimize the Mean Square pre-
diction Error (MSE). This assignment is anal-
ogous to the nearest neighbor rule in vector
quantization.

3. For each given class, the minimum MSE linear
predictor is computed through the resolution
of the normal equations.

4. Steps 2 and 3 are repeated until the MSE con-
verges to a (possibly local) minimum.

This algorithm is applied sequentially to the B
spectral bands but, as in the case of fixed predic-
tion, some caution should be taken concerning the
band ordering. This block-based training algorithm
generates appropriate prediction weights adapted
to the nonstationary contents of the multispectral
image.

4 EXPERIMENTAL RESULTS

The test images are 512 x 512 SPOT images with
a radiometric precision of 8 bpp. The first im-
age “Tunis” corresponds to a 3-band (B = 3) im-
age depicting the urban area of the city of Tunis
(Tunisia). It is a complex city scene that contains
high frequency details such as building structures
and roads. The second image “Kairouan” is 4-band
image (B = 4) concerning a rural region near the
city of Kairouan (Tunisia). Obviously, the perfor-
mance of the proposed coder depends strongly on
the choice of the reference band b;. We select the
band which is the most correlated to the remaining
bands and in both cases, the spectral component
XS2 was found to be the most appropriate (b = 2,
by =1, b; = for i > 2). The coder performance is

B n®
measured by the average entropy H = o+ =t=p—

where H(® is the zero-th entropy associated with

the b-th band. We have used the same number of
classes: Cy, = 3 for b = 1,...,B. The clustering
algorithm was applied to 8 x 4 blocks. The in-
volved overhead amounts to 0.052 bpp for “Tunis”
and to 0.055 bpp for “Kairouan” which is a very
small fraction of the overall value of H. From Ta-
bles 1 and 2, it can be noted the good performances
of adaptive prediction compared with non-adaptive
techniques even for a small number of predictors.
Block-based adaptive algorithm can achieve dra-
matic entropy decreases, up to 1.7179 bpp for “Tu-
nis”, for purely spatial DPCM. Furthermore, by
taking into account simultaneously the spatial and
the spectral redundancies, higher compression ra-
tios are obtained. Finally, Figures 1 and 2 illustrate
the decay of the entropy and the MSE with respect
to the iteration number of the clustering algorithm.
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Table 1: “Tunis” image: entropies (in bpp) ob-
tained with different predictors.

Predictor | H®) | HOG2) [ 3®s) [ %

Spatial 5.3880 | 5.2090 | 4.8336 | 5.1435
Fixed

Spatial 3.6969 | 3.5974 | 3.3602 | 3.5619
Adaptive

Hybrid 5.3880 | 4.5270 | 4.2117 | 4.7089
Fixed

Hybrid 3.6969 | 2.9210 | 3.5655 | 3.4256
Adaptive

Table 2: “Kairouan” image: entropies (in bpp) ob-
tained with different predictors.

Predictor | H®D | H®2) [ HGs) [ G |
Spatial 4.4366 | 4.4649 | 3.7935 | 3.9340 | 4.1572
Fixed

Spatial 4.3832 | 4.4062 | 3.7459 | 3.8654 | 4.1060
Adaptive

Hybrid 4.3832 | 3.4633 | 3.7806 | 3.8518 | 3.8843
Adaptive

Figure 1: “Kairouan” image: variation of the en-

tropy H(%2) vs the iteration number.

Figure 2:

Hteration number

“Kairouan” image: variation of the MSE
vs the iteration number.




