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ABSTRACT

This paper presents an enhanced POCS-based (projec-
tion onto convex sets) method for the reconstruction
of a regularly-sampled image from its irregularly-spaced
samples. Such a reconstruction is often needed in image
processing and coding, for example when using motion
compensation. The proposed approach applies two op-
erators sequentially: bandwidth limitation and sample
substitution, and is based on our earlier work. The con-
tribution of this paper is a new, simpler implementation
of the algorithm that allows for faster convergence, and
provides better performance, although at the cost of in-
creased memory requirements.

1 Introduction

Interpolation of intensity from a set of known samples
is a common task in image processing and coding. The
grids of unknown and known samples can each be de-
fined as a regular (periodic) or #rregular sampling struc-
ture (grid). There are 4 scenarios for sampling grid com-
binations of unknown/known samples:

1. regular—regular - simplest case where interpolation
filters are space-invariant; for example, interpolat-
ing filters in typical image up-conversion,

2. regular—irregular - more difficult case where inter-
polation filters are space-variant since samples to
be recovered have varying positions with respect
to the regularly-spaced known samples; for exam-
ple, bilinear or bicubic interpolation [1] in backward
motion compensation in video coding,

3. irregular—regular - still more difficult case where
interpolation filters are space-variant but may not
be easily specified in general case; for example, for-
ward motion-compensation in advanced video cod-
ing/interpolation,

4. irregular—irregular - the most general case for
which applications have not clearly emerged yet.

The first two cases have been extensively treated
in the literature and have found numerous practical

applications in image processing and coding. The
irregular—regular interpolation has been explored to a
lesser degree. The primary reason for this are difficul-
ties associated with the extension of Shannon’s sampling
theory to signals defined over irregular sampling grids;
alternative methods must be found to reconstruct or ap-
proximate the original continuous signal.

Although some results on the reconstruction of band-
limited functions from their irregularly-spaced samples
are available (e.g., [2]), their usefulness in the case of
motion-compensated video coding or interpolation is
quite limited; theoretically derived constraints on the
maximum spacing of irregular samples under the per-
fect reconstruction condition cannot be satisfied in prac-
tice by arbitrarily-distributed image samples after mo-
tion compensation. By relaxing the perfect reconstruc-
tion condition, other methods were proposed such as the
polynomial interpolation or iterative reconstruction [3].
In this paper, we extend our earlier approach to
irregular—regular interpolation [5, 6] that is based on
projections onto convex sets (POCS) [4]. Our new
method differs in implementation that is simpler, con-
verges faster and provides better PSNR performance,
although at the cost of increased memory requirements.

2 Proposed approach

Let ¢ = {9(x),x = (z,y)T € R?} be a continuous 2-D
projection of the 3-D world onto an image plane and
let g» = {g(x),x € A} be a discrete image obtained
from g by sampling over a lattice A [7]. Let’s assume
that g is band-limited, i.e., G(f) = F{g}=0 for f ¢ Q
where F is the Fourier transform, f = (fi, f2)7 € R?
is a frequency vector and 2 C R? is the spectral sup-
port of g. If the lattice A satisfies the multi-dimensional
Nyquist criterion [7], the Shannon sampling theory al-
lows to perfectly reconstruct g from g,. However, in the
case of irregular sampling the theory is not applicable.
Therefore, the general goal is to develop a method for
the reconstruction of g from an irregular set of samples
gv = {9(x;),x; € ¥ C R?)i =1,...,K}, where ¥ is an
irregular sampling grid.



2.1 POCS-based reconstruction algorithm

We use the POCS methodology [4] to reconstruct image
g- This methodology involves a set theoretic formula-
tion, i.e., finding a solution as an intersection of property
sets rather than by a minimization of a cost function.
We use the following sets [5]:

e Aj - set of all images g such that at x; € ¥, i =
1,..., K (irregular sampling grid) g(x;) = gw(x;),

e A; - set of all band-limited images g, i.e., such that
G(f) =0for f & Q.

Let the membership in Ay be assured by a sample re-
placement operator R (to enforce proper values on ¥),
while the membership in A; — by suitable bandwidth
limitation B (low-pass filtering). Then, the iterative re-
construction algorithm can be expressed as follows:

k+1
g

BRg" = Blg* + Sw(g — ¢")] (1)
RBg* = Bg* + Su(g — Bg"),

where g* is the reconstructed image after k iterations
and Sy is a sampling operator that extracts image val-
ues (luminance/color) on the irregular grid ¥. Note that
equation (1), proposed in [8], results in an approxima-
tion rather than interpolation of gg; the last step is that
of low-pass filtering. In order to implement equation (1)
on a computer, a suitable discretization must to be ap-
plied. In [8], equation (1) was implemented with:

gr"" = Blgk + aZua(gw — 3R)), (2)
where the lowpass filtering B is implemented over A and
« is a parameter that allows the control of convergence
and stability of the algorithm. The symbol g§ denotes
a bilinearly-interpolated image g} needed to recover im-
age samples on ¥. Also, note that an interpolation func-
tion Zy /a replaces the sampling operator Sy. This func-
tion interpolates image samples (gy — gk ) defined on ¥
in order to recover samples on A. Sauer and Allebach
have studied three interpolators Zg A : one derived from
bilinear interpolation and two based on triangulation
with planar facets [8]. The implementation (2) of the
reconstruction algorithm (1) suffers from two deficien-
cies. First, by processing all images on A there is little
flexibility in shaping the spectrum of gk; any practical
lowpass filtering on A must suppress high frequencies
since a slow roll-off transition band must be used to
minimize ringing on sharp luminance/color transitions.
Secondly, the interpolation operator Zy 5 , especially the
one based on triangulation (better performance), is in-
volved computationally.
In our earlier work [5], we proposed an alternative imple-
mentation of (1). Since our goal is the reconstruction of
image samples obtained from motion or disparity com-
pensation, a 1/2-, 1/4- or 1/8-pixel precision of motion
or disparity vectors is usually sufficient. Therefore, we

have proposed to implement (1) on an oversampled grid
matching that precision:

gt = Blgk, + aSwua. (9u/asr — 95,)], 3)
where B is implemented on Ap, a P x P-times oversam-
pled lattice, and P equals 2, 4, or 8 depending on mo-
tion/disparity vector precision. Clearly, A is a sub-grid
of Ap, ie., x € A = x € Ap. gy/r, is the nearest-
neighbor interpolation of gy on Ap, defined at each
x; € ¥ as follows:

gulx) i I — Il < [lxi — I,
O s

(4)

0 otherwise.

with y,z € Ap. Similarly, Sy/, denotes the nearest-
neighbor sampling, i.e., sampling on y € Ap that is
nearest to x; € ¥. In other words, the implementation
(3) is performed on a denser lattice Ap and the positions
of the irregular samples from ¥ are quantized to the
nearest position on Ap. This allows us to avoid the
cumbersome interpolation Zy,s under the assumption
that a suitable value of P is selected.

2.2 Adaptation of the relaxation coefficient
The choice of the relaxation coefficient « in equation (3)
has a direct impact on the convergence properties of the
algorithm; the greater the a, the faster the convergence
up to some Qy,q, above which the algorithm becomes
unstable. Experimental results indicate that the value of
Qmae 1 (3) is closely related to the properties of ¥; the
algorithm tends to diverge in image regions where the
number of irregular samples per unit area is highest. To
address this we have introduced an a-correcting term:

gntt = Blgk, + (/dw)Se/ap (9u/ap — 95,)s  (5)
where dy are samples of a function d describing local
density of ¥. The introduction of dg allows higher
values of a4z, and therefore faster convergence, than
those based on formulation (3). To be a good descrip-
tor of the local grid density, the function d should equal
1 where ¥ is regular, should be greater than 1 in areas
where W is denser than A, and less than 1 when converse
is true. A new, simplified computation of d is described
below.

2.3 New implementation

In our original implementation [5], the lowpass filtering
was executed in the frequency domain by means of FFT.
Here, we propose an alternative simpler implementation
using standard filtering operations in Matlab, and also
a simpler computation of grid density dy.

2.83.1 Lowpass filtering operator

Properties of the low-pass filter implementing the B op-
erator are crucial for the algorithm’s performance. Let’s
assume for now that the relaxation parameter « is 0.



Then, algorithm (5) degenerates to repetitive filtering
of the initial data set. In the frequency domain, such
a repetitive filtering results in amplifying the signal at
frequencies where filter’s magnitude response is greater
than 1, and attenuating — where this response is less
than 1. By expressing (5) for a=0, as gﬁtl =Bgk  +e¢,
where € is a correction term, we see the compositing
effect of the operator B. In order to assure that the it-
erations not diverge, we require that the gain of the filter
not exceed 1.0 and thus we formulate the first constraint
on the low-pass filter B:

Hw)[ <1, V. (6)

The above constraint assures that image samples do not
get amplified as the iterations progress.

At the same time, it is desirable that the magnitude re-
sponse |H (w)| in the passband be equal to 1.0 or very
close to it; this is in order that the correction term in

5) need not compensate for the attenuation of past g¥
Ap

(recall that gﬁjgl = Bg}  +¢). This is particularly im-

portant for the DC component of an image. Hence, we

require that:
|H(0)| = 1. (7)

Clearly, the frequency response of the filter has a (lo-
cal) maximum at w = 0. At a first glance, it seems
that the degree of attenuation in the stopband is not
critical due to the effect of repetitive filtering. Experi-
ments show, however, that good attenuation is impor-
tant for the removal of high-frequency components of
recent correction terms in (5). It appears that for best
results the error weights in the passband and stopband
of the Remez exchange algorithm (design of equiripple
FIR filters) should be approximately the same.

2.8.2  Local grid density function

In our previous work [6], we have observed that the pre-
cise functional form of the local density grid function d
has little influence on the performance of the whole al-
gorithm. This suggests that a simplified (and, perhaps,
more efficient) definition should work as well. We pro-
pose here to compute the function d by smoothing out
(or spreading) the following indicator function (4):

9(x) = sign{gu/n,(¥)},  x=[z,y]" € Ap

i.e., function that is equal to 1.0 at nearest-neighbor
(Ap) positions from ¥, and zero otherwise. The smooth-
ing filter should have non-negative impulse response,
as the local density function cannot be negative, and
should retain the signal energy. As the prototype
filter, we have used the following impulse response:
hi(z) = [0.05,0.17,0.56,0.17,0.05], described earlier in
[6]. The overall filter is defined as follows: h(z) =
P2hy (z) * ha(z) * ... * hp(x), where * is the convolution
operator (P-fold self-convolution times suitable gain).

This 1-D horizontal filter is convolved with its trans-
posed (vertical) sibling to obtain a separable 2-D FIR
filter. The density grid function d is therefore obtained
by the following filtering:

d(z,y) = 9(z,y) * h(z) * h(y), x=[z,9]" € Ap,

based on which dy can be computed. To avoid problems
with divisions by zero in (5), all “unused” samples of the
resulting density grid function, i.e., not coinciding with
(quantized) positions in ¥, have been set to 1.0.

3 Experimental results

The proposed method was implemented in Matlab, and
tested on a pair of ITU-R 601 (720x480) stereoscopic
images Flower (Fig. 1). Disparity-compensated predic-
tion was applied to the left image in order to reconstruct
the right image; disparity vectors predict the right im-
age on an irregular grid to which the proposed algorithm
is applied. Reconstruction error is used to gauge algo-
rithm’s performance [6]. The algorithm was tested for
the oversampling ratio P = 4.

The lowpass filters have been designed using the Re-
mez exchange algorithm for linear-phase equiripple FIR
filters. Although the method allows an easy determi-
nation of band edges and proportions between ripples
in passband and stopband, there is no direct way to
impose a constraint that filter frequency response have
a maximum at w = 0. Since this constraint is crucial
to algorithm’s performance, it has been enforced manu-
ally by tuning error weights in both filter bands, and by
slightly modifying band edges, originally set to 0.78/P
and 1.22/P (i.e., the same as in [5, 6]). The result-
ing filter coefficients have been normalized (divided by
their sum, i.e., by H(0)). The constraint (6) has been
enforced manually as well (trial-and-error).

We have designed various filters of which results for 11-,
19-, and 27-tap filters are presented here. For 19-tap
filters the new method has similar computational com-
plexity on 720x480-pixel images as the original method
based on frequency-domain filtering [5, 6]. Fig. 2 (top)
shows the evolution of the reconstruction error PSNR for
the 11- and 27-tap filters, as well as for the frequency-
domain filtering proposed earlier [6]. In the case of
carefully-designed FIR filters, a = 0.8 allowed a stable
evolution, while for frequency-domain filtering a had to
be limited to 0.7. The weights of passband and stopband
errors were [1, 1], while band edges — as stated above. As
can be seen, in early iterations the frequency-domain fil-
ter performs better, but after 4 iterations the roles are
reversed; the new filters assure faster convergence of the
reconstruction algorithm. The final PSNR for the 11-
tap filter is slightly lower than that for the 27-tap filter.
This is due to a relatively large ripple in the passband
of the 11-tap filter, thus resulting in a stronger signal
attenuation at the bandwidth edge.

Fig. 2 (bottom) compares the performance of 11- (band
error weights [1,1], and [1,10]), 19- (band error weights



Figure 1: Right image of stereo pair Flower.

[4,1]), and 27-tap filters. An 11-tap filter with [10,1]
weights was unstable, and a 19-tap filter with [1,1]
weights has a minimum at w = 0. The 11-tap filter
with [1,10] weights (denoted “FIR - 2”) has a partic-
ularly large ripple in the passband, hence, introduces
strong attenuation at the passband edge, and poor final
PSNR. The high-quality filters of length 19 and 27 have
the smallest ripples. Fig 2.b also shows that the size
of ripples in the stopband determines the convergence
speed of the algorithm; the 19-tap filter has relatively
large ripples. The 11-tap filter with [10, 1] weights did
not converge at all. Interestingly, a strong attenuation
in the passband (actually, reduced bandwidth) of the
second 11-tap filter increases algorithm’s stability; a’s
as large as 1.6 do not cause any convergence problems,
although the steady-state PSNR is not as high as for
other filters.

4 Conclusion

We have presented a simplified implementation of
irregular—regular image interpolation based on POCS
methodology. The new implementation is simple and
can be easily programmed in Matlab, assures faster con-
vergence, and lower reconstruction errors. The price
to be paid for the implementation simplicity and im-
proved performance are increased memory requirements
to store a P x P-oversampled lattice.
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Figure 2: Evolution of PSNR of the reconstruction error.
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