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ABSTRACT

We introduce a method for detecting strongly monotone
evolutionary trends of gene expression from a temporal
sequence of microarray data. In this method we perform
gene filtering via multi-objective optimization to reveal
genes which have the properties of: strong monotonic
increase, high end-to-end slope and low slope deviation.
Both a global Pareto optimization and a pair-wise local
Pareto optimization are investigated. This gene filtering
method is illustrated on mouse retinal genes acquired
at different points over the lifetimes of a population of
mice.

1 Introduction

Microarray analysis of gene expression profiles offers one
of the most promising avenues for exploring genetic fac-
tors underlying disease, regulatory pathways controlling
cell function, organogenesis and development [6, 4, 5].
Oligonucleotide-based microarrays allow researchers to
accurately quantify the expression level of RNAs of
thousands of genes in a tissue sample, thereby provid-
ing valuable information about complex gene expression
patterns [7]. However, the massive scale and variabil-
ity of such microarray expression data creates new and
challenging problems of clustering and data mining: the
so-called gene filtering problem.

This paper is an extension of a robust and flexible
approach to gene filtering presented in [3]. We called
this approach Pareto gene filtering which was based on
optimizing two criteria for discovering monotonic gene
trajectories. Here we will extend this analysis to three
criteria. A more stringent gene filter can be designed
by appropriately supplementing the former technique
with additional filtering criteria. We compare the global
Pareto fronts to the locally optimal pairwise Pareto
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fronts. The criteria, applied in pairs, give sets of Pareto
fronts which can be combined by intersection. This
strongly reduces the number of candidate genes which
must be evaluated by RT-PCR analysis techniques.

The outline of the paper is as follows. In Sec. 2 a brief
overview of microarrays is given. In Sec. 3 we describe
the new gene evolution clustering algorithm and in Sec.
5 we apply it to analysis of a sequence of Affymetrix
microarrays of mouse retina and we experimentally val-
idate our analysis using real time RT-PCR techniques.

2 GeneChip Microarrays
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Figure 1: Affymetrix GeneChip image.

While the methods described herein are applicable to
general genetic expression data, we focus here on anal-
ysis of the Affymetrix GeneChip oligonucleotide array.
The GeneChip contains several thousand single stranded
DNA oligonucleotide probe pairs, which are each 25
bases long and correspond to target genes of interest
[6].

Each probe pair consists of an element containing
oligonucleotides that perfectly match the target (PM
probe) and an element containing oligonucleotides with
a single base mismatch (MM probe). During hy-
bridization the labeled RNA of interest binds the probe
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pair, and the level of binding to each element is de-
termined through electronic scanning of the GeneChip
post-hybridization and wash. The expression level of
a target RNA is quantified by determining the differ-
ence between the PM and MM probes, and averaging
this difference for all sixteen probe pairs that represent
a given gene (avgdiff, or average difference). Affymetrix
software is used to extract intensity information from
the GeneChip image (see Fig. 1), and this data is sum-
marized in the form of a spreadsheet with numbers, e.g.
call, average difference and log average, indicating ab-
sence or presence of a strong hybridization and level of
hybridization for each probe. As with any technology
taking many thousands of measurements, even a low
level of variability can result in many false positives or
negatives, therefore replications of the experiment are
required to minimize such variability.

The aging experiments described below consist of
M = 4 samples in each of K = 6 different mouse popu-
lations. Each population corresponds to a different time
point ranging from postnatal day 1-10 to 21 months of
age. For each time point M different GeneChip microar-
rays were processed each containing over N = 12, 000
probes. The objective is gene filtering: to detect and
cluster interesting patterns of gene expression indicative
of evolution of the gene over the K time points.

3 Filtering Genetic Signals

For the n-th probe, n ∈ {1, ..., N} of m-th the mouse,
m ∈ {1, ..., M}, sampled at the k-th time point,
k ∈ {1, ..., K} we define the GeneChip avgdiff response
ym

n (k). When looking for genes which have signifi-
cant non-constant trajectories it is natural to cluster
genes based on two criteria: small population variabil-
ity at each time point (intra-class dispersion) and large
variability between populations at different time points
(inter-class dispersion). Two natural measures of intra-
class dispersion and inter-class dispersion are the (un-
normalized) sample deviation of the n-th gene at time
sample k

ξ1
n(k) =

∑

i 6=j

‖yi
n(k)− yj

n(k)‖, (1)

and the sample deviation between the n-th gene at time
samples k1 and k2

ξ2
n(k1, k2) =

∑

i,j

‖yi
n(k1)− yj

n(k2)‖, (2)

where ‖ • ‖ denotes a norm, e.g. l1, l2 or l∞. A simple
test, analogous to the paired T-test [2], to separate the
two time samples could be based on thresholding the
ratio of the two dispersion measures:

Tn(k1, k2) =
M − 1
2M

ξ2
n(k1, k2)

ξ1
n(k1) + ξ1

n(k2)
> T −1(1− α),

(3)

where T −1(1−α) is a threshold chosen to ensure level of
significance α ∈ [0, 1]. Figure 2 shows boundaries of the
critical region in the ξ1 × ξ2 plane specified by (3) for
the mouse gene microarray experiment described in Sec.
5. These boundaries are straight lines corresponding to
thresholding (3) at the respective levels of significance.
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Figure 2: Scatter plot of inter-class and intra class disper-
sion criteria (1) and (2) for 8826 mouse retina genes. Su-
perimposed are T-test boundaries for levels of significance
α = 50% and α = 10%.

4 Pareto Filtering Methods

The principle of multi-criterion optimization is different
from scalar criteria for filtering and clustering genes such
as the paired t-test (3). Rather than filtering by thresh-
olding a scalar criterion, e.g. the t-test ratio on the left
side of (3), multi-criterion filtering captures the intrin-
sic compromises among the conflicting objectives, e.g.
dispersion criteria (1) and (2). Consider Fig. 3.a and
suppose that ξ1 is to be minimized and ξ2 is to be max-
imized. Under this criterion it is obvious that gene A is
“better” than gene C because both criteria are higher
for A than for C. However it is not easy to specify a pref-
erence between A, B and D. Multi-objective clustering
uses the ”non-dominated” property as a way to establish
such a preference relation. A and B are said to be non-
dominated because a gain on one criterion in going from
A to B corresponds to a loss on the other criterion. All
the genes which are non-dominated constitute a curve
which is called the Pareto front (Fig. 3.b). A second
Pareto front is obtained by stripping off points on the
first front and computing the Pareto front of the remain-
ing points. Pareto analysis has been adopted for many
applications including evolutionary computing and op-
timization [8, 10]. Figure 4 shows the first three Pareto
fronts related to the classical criteria (1 & 2).
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Figure 3: a). Dominance property, and b). Pareto optimal
fronts, in dual criteria plane.
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Figure 4: First (circle) second (square) and third (hexagon)
Pareto optimal fronts for same data as shown in Fig. 2.

Pareto analysis provides a new non-parametric gene
filtering method which we have used [3] for detecting
genes with specific patterns of temporal evolution. The
method was based on joint-maximization of two criteria,
namely monotonicity ξ1 (eq. 4) and end-to-end increase
ξ2 (eq. 5) of the gene trajectories. The y? notation de-
notes the arithmetic average of yi over i. Since different
mice are sacrificed to form each time point, virtual time
trajectories must be reconstructed. There are a total
of KM possible virtual trajectories. An example of a
typical set of these trajectories is shown in figure 5.

ξ1
n =

1
KM

∑

i,j,k

sgn
(
yi

n(k + 1)− yj
n(k)

)
, (4)

ξ2
n =

1
M2

∑

i,j

(
yi

n(K)− yj
n(1)

)
= y?

n(K)− y?
n(1), (5)

After steady monotonic increase, the gene shown on
the figure 5 displays a plateau starting at time M2. This
can be associated to a development gene as contrasted to
an aging gene which are of particular interest to us. For
that reason we introduce a third criterion to eliminate
development genes from monotonic genes. This third
criterion (eq. 6) minimizes the maximal slope difference
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Figure 5: Typical set of trajectories associated with a par-
ticular gene

within the set of trajectories associated with a particular
gene.

ξ3
n = max

i,j,k

(
yi

n(k + 1)− yj
n(k)

)−min
i,j,k

(
yi

n(k + 1)− yj
n(k)

)
,

(6)
With these three criteria we can find the Pareto fronts

of interesting genes. The most natural approach to ex-
tract these genes is to find a global Pareto front. This
front is the set of non-dominated genes relative to all
three criteria. An alternative is to find every local pair-
wise Pareto front and find the intersection. This is a far
more stringent selection criterion.

5 Gene filtering application

As in [3] we applied the Pareto analysis described above
to classifying patterns in mouse retina. The experiment
consists of 6 time samples of retina material taken from
a population of 24 mice. 4 mice were selected from
the population at 6 different times including 2 early
development (Pn2-Pn10) and 4 late development and
aging (M2-M21) points. The 24 gene GeneChips were
processed by Affymetrix software returning a Unigene-
ordered list of 12,422 genes each labeled with Affymetrix
attributes such as “call,” “avgdiff,” and “logavg” [1].
We eliminated from analysis all genes called out as
“absent” from all chips, leaving 8826 genes whose ex-
pressions were analyzed using the “avgdiff” attribute.
The total number of time trajectories for each gene is
64 = 4096.

The figure 6 shows the solutions to the global Pareto
optimization, using the three criteria discussed above.
The arrow on the graph points in the preferred direction
of the three criteria. There are more than one hundred
genes on the first Pareto front shown in the figure. The
figure 7 shows solutions to the Pareto optimization of
pairs (ξ1, ξ2), (ξ1, ξ3) and (ξ2, ξ3). There is only one
solution (called the Pareto cross-optimized gene) which
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lies on all three first Pareto fronts.

Figure 6: First global Pareto front (o) for the three criteria
(ξ1, ξ2 and ξ3).

Figure 7: First Pareto fronts for each pair of criteria taken
from the set (ξ1, ξ2 and ξ3). Each one of this front is denoted
by squares, circles and stars, respectively.

Quantitative real time PCR has been employed to
independently validate this cross-optimized gene. RT-
PCR analysis is highly accurate procedure for single
gene analysis. Oligonucleotide primers for exons of se-
lected genes were designed to amplify PCR products of
about 300 bp. The SYBR Green I dye which is a highly
specific double-stranded DNA binding dye was used on
real time quantitation. Detailed analysis and interpre-
tation of this and other genes will be reported elsewhere.

6 Conclusion

We have introduced a Pareto method for gene filtering
based on three criteria. Both globally optimized and
pair-wise cross-optimized procedures have been used to

filter ”significant” sets of genes in a microarray experi-
ment. The pair-wise cross-optimized procedure is more
stringent, exposing a single significant gene among over
a hundred globally optimal Pareto genes. Thus this
pair-wise optimization procedure is a method which can
zero-in on the most interesting genes in a large num-
ber of candidate genes. Cross-validation can be ap-
plied as discussed in [3] for testing the robustness of
the procedure. This approach can be directly gener-
alized to more than three criteria. Many signal pro-
cessing challenges remain due to the increasingly high
dimensionality of genetic data sets. It will be important
to develop fast and high-throughput implementations of
multi-objective gene clustering and filtering.
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