A PIPELINED FAST NEWTON TRANSVERSAL FILTER

George-Othon Glentis
Technologincal Education Institute of Crete, Branch at Chania
Department of Electronics, 3, Romanou Str, Halepa, Chania 73133, GREECE
Email: gglentis@chania.teiher.gr

ABSTRACT

In this paper a Pipelined Fast Newton Transversal Fil-
ter, (PFNTF), is presented for adaptive filtering and
system identification. First, adaptation delay is intro-
duced that allows for pipelining of the adaptive filter.
Proper correction terms are subsequently utilized that
compensate for the adaptation delay and provide re-
sults identical to the original FNTF algorithm, subject
to an output delay. The performance of the proposed
pipelined scheme is illustrated by computer simulation.

1 INTRODUCTION

The design of adaptive filters and system identifica-
tion algorithms with optimum learning, in the sense of
minimizing the accumulated squared error between the
output signal and a desired response signal, has been
the subject of major research for a long time, [1], [4].
Typical examples include the design of decision feed-
back equalizers in digital communications, the design of
acoustical echo cancelers in hands-free telephony and in
teleconferencing, etc.

Efficient Quasi-Newton (QN) algorithms have been
recently proposed for adaptive filtering and system iden-
tification, (see [4] for an extended review). The Fast
Newton Transversal Filter, (FNTF), [2], is one of the
most widely used adaptive QN algorithm, that has been
designed for efficient filtering and system identification
of FIR models with long impulse response. Fast QN
algorithms have low computational complexity, compa-
rable to that of the LMS algorithm, yet the convergence
performance of these methods, is comparable to that of
the higher complexity fast RLS schemes.

Parallelism and pipelining in the computational flow
of the FNTF algorithm is an issue related to perfor-
mance, when high speed implementation of the algo-
rithm on VLSI ASIC is required. Direct parallel or
pipelined implementation of the FNTF algorithm is
however prohibited, due to the inner product compu-
tations that are involved. Following [5]-[10], a pipelined
architecture for the FNTF adaptive filter is proposed in
this paper. Pipelining of the original FNTF adaptive
filtering algorithm is obtained by introducing a proper

amount of adaptation delay in the filtering error feed-
back loop. Proper correction terms are subsequently
utilized that compensate for the adaptation delay and
give results identical to the original FNTF algorithm,
subject to an output delay (latency).

2 PIPELINING THE FNTF ALGORITHM

Let us consider the FNTF adaptive algorithm, for the
case when the input signal z(n), and the desired re-
sponse signal z(n), are hold up (delayed) by an amount
of D time units. The resulting scheme is described by
the following set of equations

C(n) =C(n—1)+ W(n — D)e(n) (1)

e(n) = z(n — D) + XT(n — D)C(n) (2)

X(n) =[z(n) z(n—1)...z(n—m+1)]" is the regressor
vector. C(n) is the vector that carries the filter coeffi-
cients. m is the order of the FIR model under consider-
ation. W(n) is the FNTF gain vector that determines
the search direction. It is defined as, [2],

AR(n —)W (n) = —X(n) 3)

Matrix R(n — 1) is computed in the FNTF sense, [2].
The output of the modified FNTF algorithm described
above, is identical to the output of the original FNTF al-
gorithm of [2], except from a output delay of size equal to
D. From eqs.(1) and (2) it is readily seen that the a pos-
teriori filtering error e(n) can be estimated in terms of
the a priori filtering error e(n), according to the scheme

€(n) = e(n)/a(n — D) 4)

e(n) =zn-D)+XT(n-D)C(n-1) (5)

where a(n) = 1 - CT(n)W(n).

Pipelining of the FNFT algorithm is achieved by con-
sidering the following three steps: a) Pipelining of the
filtering operation, which can accomplished by introduc-
ing an appropriate amount of time delay in order to
overcome the associated inner product bottleneck. b)
Pipelining of the gain computation part, and c) Effi-
cient estimation of the correction terms introduced, so

that (a) provides output data identical (subject to a
certain amount of output delay), to the original FNTF
algorithm.

2.1 Pipelining the filtering part

Eq.(1) is backward expanded so that C(n) is expressed
in terms of C(n — D), i.e.,

C(n)=C(n-D)+ > W(rn-D-ie(n—i) (6

Using eq.(6) in eq. (5) we obtain
e(n)=zn—-D)+X"(n—-D)C(n—D—-1)+A,(n) (7)

where A, (n) is a correction factor defined as

D
Ap(n) = Z ri(n — D)e(n — 9 (8)

Notice that the inner product computation that appears
in eq.(7) depends on C(n — D — 1) instead of C(n — 1).
The presence of the delay in the computation of the
inner product allows for pipelining of the computational
flow. Ap(n) is a correction factor, that is estimated in
terms of the a posteriori errors €(n — i) and the cross
correlation terms r;(n), defined as,

ri(n) =XTmM)Wn —-4) i=12...D 9)

2.2 Pipelining the gain computation part

The gain W (n) that appears in the filter updating equa-
tion (1) is computed in terms of the forward and back-
ward predictors of low order p << m, according to the
scheme, [2],

] = L] - Lo+ [| o

s(n) = [a(nl— 1)] kf(n), u(n) = [b(nl— 1)] kb (n)
! b
K () =)\a?(flnz K=)\a:(flnz 1)

Variables a(n) and b(n) denote the one-step ahead
and the one step backwards linear predictors of order
p << m, of the input signal z(n). ef(n) and €b(n) are
the corresponding a priori prediction errors. af (n) and
a®’(n) are the forward and backward prediction error
powers, respectively. n* is set equal n* = n — m + p.
Finally, the gain power is recursively computed as

an)=an—-1)+ s (n)ef (n) — upt1 (n*)eb(n*) (11)

where s1(n) and upy1(n) are the first and the last ele-
ment of the corresponding vector variables, respectively.

Inspection of eq.(10) reveals that the computation of
W (n) possesses an inherently pipeline structure. Thus,
it is computed elementwise in a pipelineable way, as

Wl(n) = Wi_l(n — 1) — sl(n) 1=1,2...p+1
Win)=W;_1(n—-1) i=p+2,...m—-p—1
Win)=W,_1(n—1)+u;(n*) i=m-p+1,...m

where the initial value Wy(n — 1) is set equal to zero.

2.3 Computation of the cross-correlation terms
Using egs. (9) and (10) it is easily shown that the fol-

lowing relationship holds, [3],
ri(n) = ri(n—1)—kf (n—i)ef (n)+k* (n* —i)el(n*) (12)

The forward and backward prediction errors appear
above, are defined in terms of delayed predictors, as

ef(n) =z(n) +x"(n - Da(n —i—1) (13)

et(n) =z(n —p) +x"(n)b(n —i—1) (14)

x(n) is the regressor vector of order p << m asso-
ciated to the forward and backward prediction setup,
ie, x(n) =[z(n) z(n — 1) ...z(n —p+ 1)]". Clearly,
ef(n) = e (n) and €’ (n) = e(n). The LS forward and
backward predictors are adapted in terms terms of the
Kalman gain vector. Consider the update formulae

a(n) =a(n —1) + w(n — 1)ef (n) (15)

Replacing n by n — i and solving for a(n —i — 1) we get

aln—i—1)=an—i)—wn—i—1e(n-1:) (16)
Using eq.(16) in eq.(13), it follows that

efm)=el () - m—Du(n-1) (17

In a similar way, we get
e} (n) = e}_;(n) — € (n — i)qi(n) (18)

Cross-correlation terms ¢;(n) that appear above are de-
fined as

gi(n) = xg(n)wp(n -1 (19)
They are recursively updated as, [3],

gi(n)=qi(n—1)— kf(n - i)elf (n)+k°(n — z)ef(n) (20)

In order to have a recursive scheme, ¢;(n) should be
estimated in terms of e}_, (n). Using eq.(18) in (20) we
get

gi(n —1) = K (n — i)el (n) + K (n — i)el_, (n)
ai(n) = 5(n)

1+ kb(n)eb(n
or,

_ ab(n-1)

q; (n) — Tab(n) X
(qi(n —1) = kf(n — i)el (n) + K (n — i)e?_, (n)

(21)
)

GIVEN
a(n), b(n), ef(n),e’(n), ef(n), e€n) af(n), o’(n)
ESTIMATE
A. Gain Updating Part

e’ (n et(n
))\af(n 1) kb(n) = Xaf(n-1)
1
[-

| Fe. un) = | P07 ke
:W 1in—-1)—-sMn) i=1,...p+1
(:Wl (n—l) i=p+2,..m—-p—1
Win) =W;_i(n = 1) +uy(n*) i=m-—p+1,...m
a(n) = a(n — 1) + s1(n)ef (n) — upi1(n*)e’ (n*)

C. Correction Term Updating Part

For 1=1 to D
ef(n)y=el [(n)—ef(n—i)gi(n - 1)

gi(n) = S
(s = 1) = K (n = i)ef (n) + Ko (n = ety (m))
eb(n) = el (n) — e (n — i)ai(n)
ri(n) =ri(n—1) =k (n = i)e] (n) + K*(n* —i)el(n")
End ¢
An(n) = 22,

C. Filtering Part

r;(n — D)e(n — 1)

Yo(n) = -X"(n)C(n - 1)
e(n)=z(n—D)+ys(n—D)+Ap(n)
n) = e(n)/a(n — D)
C(n—1)+ W(n — D)e(n)

Table 1: The Pipelined Fast Newton Transversal Filter
(PFNTF) adaptive algorithm.

2.4 Overall organization

The basic recursions developed so far, can be utilized for
the pipelined implementation of the FNTF algorithm. A
suitable pipelined algorithm for the computation of the
information required at each step by the FNTF scheme
(i.e., the forward and backward predictors a(n), b(n),
the prediction error power variables, af(n), a®(n), the
a priori and the a posteriori prediction errors, ef (n),
eb(n), ef(n), €’(n)), is also required. These variables can
be computed by an adaptive pipelined algorithm, such
as the adaptive Schur-Levinson algorithm, or the adap-
tive lattice algorithm, followed by an adaptive Levinson
part, [1]. Both schemes have low O(p?) complexity.

The pipelined FNTF algorithm is summarized in Ta-
ble 1. The complexity of the algorithm is

CprnTF =2m + 6D + O(p2) MADS

where, the second term is due to the computations in-
volved into the correction terms and the last term cor-
responds to the complexity of the utilized pipilined low
order LS predictors estimation scheme.

2.5 Pipelined architecture

The signal flow graph of the PFNTF algorithm is de-
picted in Figure 1, for the special case of m = 10 and
p = 3. The pipelined architecture consists of the follow-
ing parts:

a) The pipelined RLS preprocessing part. It can be
implemented by a pipelined adaptive algorithm, such
as the adaptive Schur-Levinson algorithm, or the adap-
tive lattice algorithm, followed by an adaptive Levinson
part. The number of pipelined latches required for the
pipelining of this part, is Dy = O(p).

b) The gain computation part.

c¢) The filtering update part.

d) The filtering error estimation part. This can be
pipelined by retiming the existing D delay elements.
The exact number of D depends on the pipelining strat-
egy adopted, and varies from the minimum of D =
[logy(m)]+1, when a binary tree adder is utilized, to the
maximum of D = m — 1 when full pipelining is required.
e) The correlation-correction part. The pipelining of the
correlation estimation part requires an amount of D, =
4 additional delays. The correction part is implemented
by a transposed form FIR filter of order D.

The critical path of the PENTF algorithm is T =
max{ty + ta,tp} time units, where tpr, t4 and tp is
the time required for a single multiplication, addition
and division respectively. The latency of the pipelined
architecture is Doys = Dy + D + D,

3 SIMULATION RESULTS

The performance of the pipelined FNTF is illustrated
by a typical system identification experiment. Consider
an FIR filter of order M = 256. The impulse response
was a typical impulse response of the acoustic echo path
of a car enclosure. The input signal was a synthetic
speech signal simulated by a stationary AR process of
order 14, resulting to an eigenvalue spread of the sam-
pled autocorrelation matrix of the input signal of the
order 0O(10%), [4]. At the output of the FIR system
white gaussian noise was added, resulting to an SNR
equal to about 30dB. The system changes at time in-
stant n = 25000 from C, to —C,. The unknown FIR
system was estimated using: a) the FNTF algorithm,
and b) the proposed pipelined PFNTF algorithm, where
the adaptation delay was set equal to D = 20. In both
cases, we set m = 256, p = 14, A = .998. The simula-
tion results are shown in Figure 2. The output of the
pipelined PFNTF algorithm equals to that of the origi-
nal FNTF algorithm, except from a time delay, equal to
D. The difference signal, EFNTF (n - D) — EPFNTF (n),
is depicted in Figure 2.

4 CONCLUSIONS

A pipelined implementation of the Fast Newton
Transversal Filter has been presented in this paper.
Pipelining of the original adaptive scheme has been

ef(n).eb(N) [PIPELINED xn) g X0 ST sl
ef(n) eb(n) | RLS PRE- —+> j>> '
(e} N 2
Kio(n PROCESSING §
o(N) kKf(N) a(n-1)b((n-1) X(n) . XnD) 51 s14s2)
$2 ‘
ﬁﬂ dﬂ E’J Sy o g1
Eﬂ Eﬂ] 2 %JSHS Glossary u
—]
orl s
R 7 Up
) I_Y ‘ Sp 4
50 | | | | | | | | |
OO I O I 1
Number of samples (x00)
'
J| T
X(n)
[y :
z(n) i
5y
g
3
1
1
_3 | | | | | | | | |
O .1 I O O

Number of samples (x00)

Figure 1. The PFNTF algorithm, (m=10,p=3). Thick lines represent multi-

channel data busses, while thin lines represent scalar data busses. (D1 = Dy+D)

managed, by holding up the input and output signals
and by proper algebraic manipulation of the delayed al-
gorithm. Thus, adaptation delay has been introduced
that allows for pipelining of the adaptive filter. Proper
correction terms have been utilized, compensating for
the adaptation delay and providing results identical to
the original FNTF algorithm, subject to an output de-
lay. The critical path of the pipelined scheme is reduced
to max{ty + ta,tp} time units. The performance of
the proposed pipelined scheme has been illustrated by
computer simulation.

References

[1] N. Kalouptsidis, and S. Theodoridis, eds, Adap-
tive system identification and signal processing al-
gorithms, Prentice Hall 1993.

[2] G. Moustakides, and S. Theodoridis, ’Fast New-
ton transversal algorithms- A new class of adaprive
estimation algorithms,” IEEE Trans. on Signal Pro-
cessing, vol. 39, no. 10, pp. 2184-2193, Oct. 1991.

[3] K. Berberidis, S. Theodoridis, ”A New Fast Block
Adaptive Algorithm”, IEEE Trans. on Signal Pro-
cessing, pp. 75-87, Jan. 1999.

[4] G. Glentis, K. Berberidis, and S. Theodoridis, ’Ef-
ficient least squares adaptive algorithms for FIR

Figure 2. Simulation results

transversal filtering: a unified view,” IEEE Signal
Processing Magazine, pp. 13-42, July 1999.

[5] G. Long, F. Ling, and J. Proakis, "The LMS algo-
rithm with delayed coefficients adaptation, 'TEEE
Trans. Acoust. Speech, Signal Processing, pp. 1397-
1405, Sept. 1989; (pp. 230-232, Jan. 1992 correc-
tions).

[6] S. Douglas, Q. Zhu, and K. Smith, ’A pipelined
LMS adaptive FIR filter architecture without adap-
tation delay,” IEEE Trans. Signal Processing, pp.
775-779, March 1998.

[7] K. Matsubara, K. Nishikawa, and H. Kiya,
"Pipelined LMS adaptive filter using a new look-
ahead transformation,” IEEE Trans. Circuits Sys.
II, pp. 51-55, Jan. 1999.

[8] R.D. Poltmann, *Conversion of the delayed LMS al-
gorithm into the LMS algorithm, IEEE Signal Proc.
Letter, vol. 2, pp. 223, Dec. 1995.

[9] G.O. Glentis, ’A pipelined TDLMS adaptive filter,’
ICASSP-01, Salt Lake City, USA, May 7-11, 2001

[10] G.O. Glentis, ’An efficient pipelined LMS algorithm
for Volterra system identification,” NISP-01, Balti-
more, USA, June 3-6, 2001

