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ABSTRACT

In this paper we discuss the performance of several enumera-
tion techniques for lattice quantizers when the transmission
channel is noisy. We consider the multiple scale leader lattice
quantization structure and we test three variants of lattice
vectors indexing for LSF parameters quantization. We com-
pare the results obtained with the proposed methods and
also compare with the results obtained with the codec G.729,
in the presence of noise.

1 INTRODUCTION

The multiple scale lattice vector quantization (MSLVQ) has
been introduced in [10] and extended to multiple scale leader
lattice vector quantization (MSLLVQ) in [8]. These struc-
tures performed very well for the LSF quantization, but the
problem of error resilience has not been taken into account.
The large number of codevectors prohibits the use of an in-
dex assignment as, in the some practical applications, this
will mean the storage of the permutations of the index as-
signment as a table of 2'® or 2'? integers. The channel dis-
tortion optimization of the codebook, besides the fact that
it should be made over far too many codevectors, would also
destroy the structure of the codebook. Therefore, the only
possibility to deal with a noisy channel is an adequate choice
of the enumeration algorithm of the lattice codevectors.

Several lattice enumeration techniques have been pro-
posed over the years for different truncations and lattice
types. For instance, Fischer introduced the first enumeration
technique on pyramid truncated lattice in 1986 [1], further
modified in [2] in order to improve the channel robustness.
These algorithms apply mainly to Z,, lattices. An indexing
technique based on Schalkwijk formula and on the notion of
leader vector of a lattice is developed in [6] for Z, and D,
lattices. We have also proposed a method based on leader
vectors for Z, and D, lattices and used it in conjunction with
lattice entropy coding in [9]. Recently Rault and Guillemot
[7] have presented an enumeration based on signed leaders
or generated signed leaders valid for a large class of lattices
(Zn, An, Dy, and D}T). However, with the exception of [2],
the error resilience over the channel has not been taken into
account.

In this paper we present the MSLLVQ structure and in-
troduce several enumeration algorithms for it. The enumer-
ations are based on the notion of leader class and they apply
to lattices which are invariant to signed permutations with
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or without constraints. The enumeration methods are tested
in an application concerning LSF parameters quantization.

2 MSLVQ STRUCTURE

2.1 General notions

An n-dimensional lattice A is a set of real vectors whose
coordinates are integers in a given basis {b; € R" }77:

A={veR" |v=> aib;, a; € Z}. (1)

i=1

In this paper we use the D; lattice which can be obtained
from the D, lattice as follows

n
D, ={zeZ" le is an even integer}

i=0

D} = D, U (w1 + D,), where wi = (1/2,1/2,...,1/2).

When used as a VQ, the lattice has to be truncated to the
finite number of vectors allowed by the finite rate R. Our
goal is to deal with sources whose distribution possesses a
certain symmetry property (e.g. spherical, pyramidal) and,
therefore, we consider truncations reflecting those symme-
tries. A truncation of a lattice A is defined as the set of
lattice points having the norm less or equal to a given value
K, A = {z € AIN(z) < K}, where N(z) is the selected
norm of z. If N(z) is the Euclidean norm the truncation is
spherical while in the case of the /; norm the truncation is
pyramidal.

A leader vector v of a truncated lattice A is a vector which
has positive elements ordered decreasingly. Every such a
vector defines a subset of vectors in A, dubbed as the leader
class, containing all vectors obtained by a signed permu-
tation of v, described in more detail by the following two
properties:

(1) Together with v, all the vectors obtained by permu-
tations of entries in v belong to A, if A is invariant under
permutation, which is the case for the lattices we consider in
this paper.

(2) The sign combinations —with some possible
constraints— of the elements of these vectors result in vec-
tors from A. The vectors obtained through permutations
and (constrained) sign switching form the class of the leader
vector v.

With these definitions for the leader vector and the leader
class, a truncation of a lattice can be represented as the union
of several leader classes.



A truncated lattice used as a vector quantizer means that
the codebook is a scaled truncated lattice: C = {s - ¢j|c; €
A, s € R}, where s is the scaling factor. The nearest neighbor
(NN) search in the codebook can be performed by using, for
instance, the search on leaders [8].

2.2 Multiple scale leader-lattice VQ (MSLLVQ)

The multiple-scale lattice VQQ was introduced in [10] as a
lattice VQ which is composed of the union of copies of the
same truncation of a lattice scaled with different scales.

This structure can be extended to two more flexible vari-
ants, dubbed as MSLLVQ-A and MSLLVQ-B [8].

The codebook (2) of a MSLLVQ-A structure consists of
several different truncations (at different radii) of the lattice
scaled with different scales.

Ci={si-ci|si € Z,¢; €A} Y, (2)

The sets A; , 4 = 1,T, are the truncations of the lattice A.
The asterisk (*) marks the fact that not necessarily all the
leader classes of A; are considered, some of those belonging
to the last shell of the truncation being possibly ignored. All
vectors in K: are scaled with the same scale s;.

The MSLLVQ-B structure considers the lattice as a union
of leader classes and the codebook (3) is obtained as a super-
position of different lattice truncations but each leader class
inside the truncations has its own scale,

Co = {sir - ¢ |six € Ti,ciF € V*F V* C AT, (3)

V** is the k-th leader class of the lattice truncation A; and
3); is the set of scales that multiply the vectors in leader class
;. Note that for codebooks of same size the total number of
scales in MSLLVQ-B is larger than in the case of MSLLVQ-A.
Note also that the leader classes V** C A; can also be chosen
independently of any truncation A; (i.e. not all the leader
classes in a truncation are considered) but the choice of the
leader classes becomes a combinatorial optimization task.
We do not use this flexibility, and note that the definition
(3) implicitly assumes that the truncation A; is well suited
to the input vector distribution.

3 ENUMERATION OF MSLLVQ

In order to proceed with the enumeration of a codevector
from an MSLLVQ structure we need an enumeration tech-
nique for a single scale lattice.

We present here an enumeration method derived from
those used in [6] and [9] and propose different variations.

The existing enumerations for Z,, lattices presented in [1],
[2] are not easily generalized to other lattices. The enumera-
tion methods considered in [6] and [9] apply to Z, as well as
D,, lattices and are based on the leader classes of a lattice.
We will extend them to D;} and D} lattices.

3.1 Enumeration on leaders

The cardinality of a leader class can be determined from the
components of its leader vector. Consider the n-dimensional
leader vector

V=(Un...Un...Vi...0...01...01),

where m is the number of different values (zero included)
taken by wv;, in the vector. There are n; components equal
to v; in the leader vector. The leader class has the parity a.
The number of non-zero components of the leader vector is

k. The cardinality of the leader class V is thus given by the
polynomial coefficient

|
[V| = 2k~ el " =gkl ™y
Nni...Nm nilng!. .. nm!

As remarked in [2], the information concerning the distri-
bution of signs is very sensitive to channel errors. Therefore
it should be extracted and isolated, for instance, in the least
significant bits of the codevector index. Also it should be no-
ticed that in a leader class the index for the signs (see subsec-
tion 3.1.3) has the same number of bits and is placed on the
same positions in the resulting index. Therefore the indexing
of signs and the indexing of the component distributions of
a vector from a leader class can be done independently and,
further, independently optimized.

8.1.1 Leader classes order

The order in which the leader classes are enumerated affects
the error resilience of the lattice enumeration. However, as
in the practical situations we consider, the number of leader
classes is approximately 10, it is almost impossible to con-
sider all the permutations of the leader classes. Therefore,
only several permutations can be considered, taking into ac-
count, for instance, the norms or the number of non zero
components of the vectors in the leader class. Usually the
leader classes are ordered by their norms.

From this point on, we face two problems: how we enu-
merate the distributions of signs (sign enumeration) in the
vectors and how we enumerate the distribution/position (po-
sition enumeration) of the components in the vectors.

3.1.2 Position enumeration

In this subsection, given a leader vector, we present different
possibilities to enumerate the distinct permutations of its
elements.

Lexicographical order (P1)

One of the first choice on how to enumerate the vectors
of a leader class is to order them lexicographically. We

say that the vector (:cgl),...,x%l)) precedes lexicographi-

cally (m?), . .,mg)) if 35 such that xg-l) < mJ(-Q) and Vi < j,
Y = 2® . From the definition of the leader class we have

that v1 < ... < vp. The lexicographical enumeration can be
explained as being based on the following identity

n n—1 n—1
= +...+
NL...NMm n—1...nm N1 .M — 1

(5)
the terms on the right side of the equality representing the
number of vectors that start with v;, with v2 and so on. An
example of an algorithm realizing this enumeration can be
found in [5] or [7].

Counting binomial coefficients (P2)

The part, corresponding to the positions of the components
from the cardinality of a leader class (4), can also be written
as

n _fn)(n-m n—" "

Therefore, an algorithm counting in how many ways n; val-
ues v1 can be put on n positions, then in how many ways no
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Table 1: Illustration of P1 and P2 position enumerations for
the leader class (3 1 0 0).

values v can be put on n — n; positions and so on, is ob-
tained. The recursive function used to enumerate binomial
coefficients is given by the following equation

pl0l, =1
c2i(n,p,q) = vlo] o)+ (7)
+c2i(n—p[0]-1,p+1,9—-1), ¢>1

where n is the dimension of the vector (available positions),
q the number of values that are placed on the positions
p[0],p[1],...,plg — 1] (C language notation is used for the
pointer p). In Table 1 the two position enumerations are
illustrated.

8.1.3 Sign enumeration
Leader class with null parity

A zero value parity for a leader class means that there is no
constraint on the number of either positive or negative com-
ponents in a vector from that class. A very simple indexing
method for the vector of signs can be realized by assigning
to each strictly negative component the value 1 and to each
strictly positive component the value 0 the resulting binary
string being the index Is.

Leader class with non-null parity

If a leader class has a non-null parity, , 1 or —1, then its
vectors should have only an even or odd number of negative
components, which makes unusable the previous method of
indexing the signs.

The principle of the sign enumeration in this case is to
order the vectors after the number of negative components.
Thus, if the parity is —1, we will have first the vectors with 1
negative component, then 3,5, ... negative components and
so on, but the vectors are from the same leader class. The
corresponding index is:

Ie— E}E: (2) + c2i(k, p,n_)
Ei:l - (27;11) + CQI(k,p, n*)

where k is the number of non zero components of the vector,
n_ is the number of negative components of the vector and
p is an array specifying the position of the negative compo-
nents relative to n,.

a=1

8)

a=-—1

3.2 Multiple scale lattice enumeration

If there are several leader classes or several lattice trunca-
tions the indexing of their vectors is realized taking into ac-
count the order of the leaders discussed in subsection 3.1.1.
Thus the index of a codevector is represented as:

[Scale / L / P ] Sign |

where L enumerates the leader class and P enumerates the
components positions in the vector. The bits for the sign are
separated by a vertical line because the same number of bits
is used for the sign distribution in a given leader class (the
total number of sign distributions in a leader class is a power
of 2).

4 RESULTS

4.1 Application to LSF quantization

Linear predictive coding (LPC) method is one of the most
popular approaches used for describing the short-term spec-
trum of speech signal. Due to the quasistationary nature of
speech a new prediction filter is computed for each frame of
10 ms or 20 ms. The process of quantizing the filter coef-
ficients to a finite number of bits/frame is known as LPC
quantization.

The spectral distortion is often used as an objective mea-
sure of the quantization performance:

100 /™ ' 12 1/2
SD = {T/ [IOglo |An(e’)]* —logy, |An(6]w)|2] dw}
0

(9)
where SD is given in dB, A, (e’*) and A, (e/*) are the spectra
of the n-th speech frame, without and with quantization,
respectively.

4.1.1 LPC Analysis

A speech coder based on LPC extracts the information con-
cerning the short-term spectral envelope by using an all-pole
filter H(z) = 1/A(z), where A(z) is the prediction filter,
given by A(z) =1+a127' +... 4+ apz~". The order r of the
filter is usually 10. A description of the filter A(z) must be
communicated to the receiver for each frame. To ensure the
stability of the all-pole filter H(z), it is necessary to trans-
form the LPC coefficients in other representations, usually
the LSF representation [4]. Since we wanted to compare the
quantization results with those obtained by the G.729 speech
codec, the LPC analysis part is the same as for the codec,
described thoroughly in [3].

4.1.2 LSF quantization with MSLLVQ

We experimented the MA predictive multiple-scale lattice
VQ for the quantization of LSF parameters. That is, seeking
to eliminate inter-frame correlations, the prediction errors
of the LSF parameters are quantized, instead of the actual
LSFs. The MSLLVQ structures have given very good results
for LSF quantization for an error-free channel, reducing by
14% the spectral distortion relatively to the codec G.729
and by more than 10 times the computational and storage
complexity [8].

4.1.8 LSF quantization with MSLLV(Q) over noisy channels

We are interested in the influence of channel errors on the
overall coding process. We have tested the indexing on lead-
ers with the different enumerations of components positions
presented in subsection 3.1.2 assuming a binary symmetric

)



BER Sc/L/P3/Sg Sc/L/P1/Sg
SD | 2,4 | >4 | SD | 2,4] | >4
(%] | [dB] | [%] | [%] |[dB] | [%] | [%]
0.0 1.29 | 10.21 | 0.84 | 1.29 | 10.21 | 0.84
0.1 1.52 | 13.27 | 3.93 | 2.06 | 29.25 | 10.06
0.2 1.65 | 15.83 | 5.70 | 2.18 | 30.61 | 11.84
1.0 2.60 | 29.71 | 19.50 | 2.98 | 37.07 | 25.59

Table 2: Average SD and outliers in LSF quantization for
MSLLVQ-A at 18 bits using P1 (lexicographical) and P3
(leaders ordered by the norm and the number of non-zero
components) enumerations.

BER Sc/L/Sg/P2 Sc/L/P2/Sg
SD [ 2,4 | >4 | SD | 2,4] | >4
(%] | [dB] | [%] | [%] |[dB] | [%] | [%]
00 | 1.29 | 1021 | 084 | 1.29 | 10.21 | 0.84
0.1 | 1.46 | 13.47 | 2.92 | 1.44 | 13.41 | 2.67
0.2 | 1.60 | 16.08 | 490 | 1.60 | 16.01 | 4.38
1.0 | 2.63 | 29.74 | 20.36 | 2.52 | 30.04 | 18.25

Table 3: Average SD and outliers in LSF quantization
for MSLLVQ-A at 18 bits using P2 (counting binomial
coefficients) with the bits of sigs distributions on the
least significant positions (Sc/L/P2/Sg) or inside the index
(Sc/L/Sg/P2) enumerations.

channel. w-MSLLVQ means that in the NN search the se-
lection between different leader classes is made according
to a weighted distance [3]. The multiple scale structure
is specified as ), n; X l;, where [; is the last leader class
that is contained in the truncation and n; indicates how
many times the corresponding truncation is considered in
the codebook. The lattice used for quantization is the D;'E)
lattice. The scales are trained on 115006 speech frames from
the TIMIT speech database. The results are reported over
500000 speech frames from the TIMIT test set. From Tables
2 and 3 it can be observed that our enumeration based on
the counting of polynomial coefficients leads to the best re-
sults, the lexicographical order leading to the poorest ones,
the difference between the two being significant. We have
also used an idea from the enumeration of [2] by changing
the leader classes order such that for the same norm, the
leader vectors should be decreasingly ordered by the num-
ber of non-zero components (P3). However this change does
not bring any improvement as the number of leader classes
with the same norm is quite small. From Table 3 we can
observe the beneficent effect of the delimitation of the signs
distribution bits as the least significant bits.

Finally we have compared the behavior over noisy chan-
nels for the MSLLVQ scheme and for the quantization
scheme in the codec G.729 (Table 4). Although for small
bit error rates the MSLLVQ scheme maintains its superi-
ority, for larger values of bit error rates the codec shows a
better error-resilience. This comparison strengthen the fact
that the lattice enumeration is a very delicate matter in the
presence of channel errors. At a closer look to the enumera-
tions of positions it can be observed that there are in fact a
multitude of ways to enumerate them and we are currently
studying new procedures of enumeration optimization aimed

BER Codec G.729 w-MSLLVQ-B
SD |24 | >4 | SD | 2,4 | >4
(%] | [dB] | [%] | [%] | [dB] | [%] | [%]
0.0 1.35 12.0 0.5 1.19 6.8 0.3
0.1 1.40 | 13.78 | 0.74 | 1.36 | 11.71 2.84
0.2 1.42 | 1437 | 0.79 | 1.43 | 14.77 | 4.25
1.0 1.82 | 28.40 | 3.93 | 2.42 | 31.77 | 16.01
2.0 2.26 | 39.82 | 879 | 3.24 | 39.74 | 29.60

Table 4: LPC quantization with the codec G.729 over a bi-
nary symmetric noisy channel.

at the MSLLVQ structure.
5 CONCLUSION

In this paper we have presented a quantization structure
consisting of a union of lattice truncations or of lattice
leader vectors differently scaled. We have introduced sev-
eral enumeration techniques and we have studied their error-
resilience in the presence of a noisy channel. The new quanti-
zation structure outperforms the quantization scheme of the
codec G.729 for zero and small bit error rates, but still needs
some further refinement of the enumeration methods at large
bit error rates where the performance degrades significantly.
We have pointed out that the enumeration method is very
important in the presence of noisy channel, the error re-
silience being very sensitive to the choice of codevectors enu-
meration.
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