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ABSTRACT

In a transform coding framework we compare the op-
timal unitary approach (Karhunen-Loeve Transform,
KLT) to the optimal causal approach (LDU, Lower-
Diagonal-Upper). In absence of perturbations, both
transforms have recently been shown to yield the same
coding gain [2, 4]. The purpose of this paper is to com-
pare the behavior of these two transformations when
the ideal transform coding scheme gets perturbed, that
is, when only a perturbed value Rxx + AR of Rxx
is known at the encoder. In a real backward adap-
tive scheme, AR is due to two noise sources : estima-
tion noise (finite set of available data at the encoder)
and quantization noise (quantized data at the decoder).
Furthermore, not only the transformation itself gets per-
turbed, but also the bit assignment. Theoretical expres-
sions for the coding gains in both unitary and causal
approaches are derived. Simulation results confirming
the predicted behavior of the coding gains with per-
turbations are reported. This work is a follow-up of
[1], where the influences of quantization and estimation
noises were analyzed separately.

1 INTRODUCTION

Consider a stationary Gaussian vectorial source {X}.
This source may be composed of any scalar sources {z;}.
In the classical transform coding framework, a linear
transformation 7" is applied to each N-vector X} to pro-
duce an N-vector Yy = T X whose components are in-
dependently quantized using scalar quantizers @;. A
number of bits r; is attributed to each @); under the

constraint ) ,7; = Nr. For an entropy constrained
scalar quantizer of a Gaussian source, the high reso-
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lution distortion is E(yiyk —Yik)? = o5 = 27y,
where ¢ = Z2.

6
An important property of commonly used transforma-

tions is that, if a noise (for example quantization noise)
is added to the signal Y, then its power will be the
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same in the transform and in the signal domains. This
property is sometimes referred to as ”unity noise gain”
property [2]. The coding gain for 7" is then defined as

BRI, EIXIR,
BlIXIZy ~ EIVIE,

(1)

T

where I is the identity matrix, and the notation ||)~(||%T)
denotes the variance of the quantization error on the
vector X, obtained for a transformation 7. The op-
timal bit assignment yields the well known distortion
. . 2 1 N 2
for the vectorial signal {Y'} : E||Y||z = &) 2,05, =
Ne2—2r (Hf\;l 0'51 R No'g. 0'51 is independent of

¢, and the number of bits assigned to the ith compo-
2
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recall the main characteristics of the optimal causal ap-
proach (LDU) when optimized on Rx x, and recall why
its performance is the same as the best unitary approach
(KLT).

However, a backward adaptive coding scheme generally
deals with non- or locally stationary signals. Sending
the updates of the signal-dependent transformation and
bit assignment as side information would cause a consid-
erable overhead for the total bit rate. Thus, the back-
ward adaptive coding scheme should require that neither
the transformation nor the parameters of the bit assign-
ment are transmitted to the decoder. So suppose now
that the coding scheme isAbased on Rxx = Rxx + AR
instead of Rxx, where Rxx is available at both en-
coder and decoder. Then the computed transformation
will be T'= T+ AT, and the distortion will, under high
resolution assumption, be proportional to the variances
of the signals transformed by means of 7" instead of T,
say oﬁi. Moreover, the bits r; should be attributed on
the basis of estimates of the variances available at both
encoder and decoder also, that is, (T"RxxT):;, where
(.)i; denotes the ith diagonal element of (.). Hence, un-
der the assumption of Gaussianity for the transformed
signals | we get the following measure of distortion for

nent is r4 %logQ In the next section, we



a transformation 7" based on Rxx :

o
N =2t dlogy — RN —]
=~ ~
E||y||2/\ —F ) (lel(TRXXT )ii) 0_2
(T) Yi?
i=1

where the expectation is w.r.t AR in case it is n(gl%2
deterministic. As a preliminary study [1], this distortion
was computed for LDU and KLT transforms for a AR
caused by quantization noise only (the coding scheme
is based on the statistics of the quantized data, un-
der high resolution assumption) and by estimation noise
only (the coding scheme is based on an estimate of Rx x
computed with a finite amount of K vectors). For the
sake of clarity, the results concerning these two cases
are briefly summarized in the third and fourth sections
respectively. Section 3 also shows that the expression
of the gain in the causal case with quantization noise
in [1] is a lower bound, but that the actual coding gain
however is very close to this bound. The main results
concerning the joint influence of quantization and es-
timation noise for the coding gains of KLT and LDU
are presented in the fifth part. Detailed calculations in-
volved in this work will be skipped for lack of space but
can be found (as those leading to the results of [1]) in [5].
Simulation results confirming these theoretical gains are
presented in Section 6.

2 OPTIMAL CAUSAL AND UNITARY AP-
PROACHES WITHOUT PERTURBATION

In the causal case, Y = LX = X —LX, where LX is the
reference vector. The output X9is Y94+LX. As detailed
in [4, 2], the components y; are the prediction errors of z;
with respect to the past values of X, the Xi.,;_1, and the
optimal coefficients —L; 1,1 are the optimal prediction
coefficients. It follows that Rx x = L_lRny_T, which
represents the LDU factorization of Rxx. The coding
gain is for L is

oip g ) de iogt) )
L™\ det [diag(LRxx LT)] )~ det A v

3)
where V' denotes a KLT of Rxx, and A its correspond-
ing eigenvalue matrix. This is actually the best cod-
ing gain achievable among all unimodular transforms (a
proof can be found in [3]).

3 QUANTIZATION EFFECTS
ON THE CODING GAINS

Suppose we compute the transformation on the basis
of quantized data (whose statistics are assumed to be
perfectly known in this section). Under the assump-
tions of high resolution (uncorrelated white noise), op-
timal bit assignment and unity noise gain property of
the transformation, AR equals EXXT = 0'31, where

2 _ -2 (TTIV 2\ ¥ : :
oy = 2 (Hi:l O'yl) for Gaussian transform sig-
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nals. Thus,
1 (?RX‘ZX‘Z;T)”
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(T\q) e

i=1
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(where g refers to quantization). Evaluating (4) for T =
I,V and L gives the following results [1].

3.1 KLT

For T = 1, ‘A/, the quantization does not change trans-
formations. However, an increase in distortion comes
from the perturbation occuring on the bit assignment
mechanism. One shows that the coding gain based on
quantized data is in the unitary case

Go(det(] + Gg(diangx)_l))%tr{(] + ag(diagRXX)_l)
Vi,q

(det (I + o2(A=1))) ¥ er{(] + o3(A=1)) ™"}
(5)

3.2 LDU

In the causal case, the coder uses a transformation
L = L' such that L'RxaxeL' T = R}y . Riy is the di-
agonal matrix of the estimated variances involved in the
bit assignment (L’ and Rj are both available to the de-
coder). In this case, the difference vector Y is X — L' X
the quantization noise is filtered by the rows of L/, see
Figure 2. Note that E||)~(||%,7q still equals E||§~’||%,7q,
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Figure 1: Closed Loop Causal Coding Scheme.

since X = X9—X = Y94/ X9-X = YI—(X-L'X9) =
Y? —Y =Y. The actual variance of the ith signal y;
obtained with L' is 02, = (L' Rxaxa L' " —o71)ii [4]. We
now show that evaluating (4) with T=1 yields an up-
per bound for E”}N/”%L’,q)’ and thus a lower bound for
the coding gain G4 in the causal case. Consider the
signal in the transform domain :

i—1 i—1
Yik = Tik — g Llijzi_jr — g L'ijqi—jk (6)
Jj=1 Jj=1



The random variable (r. V) yi is the sum of a Gaus-

Zz T LZ]JJZ —j.k, and of 4 — 1 uni-
= f;jqz_]yk. Hence, for i > 1, {y;}
is not Gaussian. In order to compare the actual rate-
distortion function of the {y;} with that of a Gaussian

slan r.v. zip = Tk —

form r.v.s u;j

two transformations) is that the coding gains with esti-
mation noise are the same in the causal and the unitary
cases. With D = diag{Rxx}, the coding gain for the
two approaches, by computing the transforms and the
bit assignments on the basis of K vector is given by

r.v., denote by H( ) the entropy of the quantized vari- o - E||§~’||%LK) ~c (1 |-tr{RD 'rRD- 1} -1 1
able yl, h(y;) the dlﬁerentlal entropy of y;, r; the mini- QK_EHY/HQA ~ K| N2 2 N
mum number of bits per sample necessary to code loss- (V.1 )

lessly y?, and A; the step size of the uniform quantizer
@;.- Then we have under the high resolution assump-
tion H(y!) = ri = h(y;) — logaA;, where logsA; corre-
sponds to the differential entropy of the uniformly dis-
tributed r.v. ¢; @ logaA; = h(g) = %logﬂl?ai) =
%log2(12E||§i||2). Thus r; = h(y;) — %log2(12E||§i||2).
Since for a given variance the Gaussian probability
density function (p.d.f) maximizes the differential en-
tropy h(y:), an upper bound for r; may be found as

2reo?
lo % which gives E||y E2_2“02
g2 12E||y ||2a g Yi y!

The distortion E||Y|| L'9) is then upper bounded by (4),

that is, with ¢ = 7,

1> <

(12 _ v AR
EY[TL g = 2= Ellgill
’
—2[r+Llogs N(RY#]
7 ’
< Zi\;l 62_2“‘75’ = Zi\;l c2 ey o™ 5
) (7)
. E|Y
Hence, the gain G/, = E””Y”ﬁ becomes lower
(L',9)
E|Y . .
bounded by I !(2"’) - = Glow . It is shown in [I]
z:lc ]
that G,

O(det(f—}—o' (diagRxx)~ ))%tr{(l—i—a (diagRx x)') =1}
(det(I+02(A=1)))~tr{(I-o2(Ryy~1))}

(8)
Now, the r.v. y; is strictly Gaussian. Moreover, the
convolution of ¢ — 1 Uniform p.d.f.s is known to tend
quickly, as ¢ grows, to a Gaussian p.d.f. Thus, y; tends
to be Gaussian and for reasonably high N, this bound
is a fairly precise measure of the actual coding gain :

GLI g~ Glow )

4 ESTIMATION NOISE

We present in this section the coding gains of a backward
adaptive scheme based on an estimate of the covariance

matrix RXX =+ ZZ 1 X XT. We suppose indepen-
dent identically dlstrlbuted real vectors X;, which is for
example the case if the sampling period of the scalar sig-
nals is high in comparison with their typical correlation
time. In the causal case, there is a qualitative difference
with the previous section, where the quantization noise
was filtered by the predictors of L’. Here, the estima-
tion noise does not perturb signals (in particular the y;
are Gaussian even in the causal case), but only transfor-
mations and bit assignments. An interesting result (due
to the decorrelation and unimodularity properties of the

N
IV B>
i=1

. LDU transforms.

5 QUANTIZATION AND
NOISE

ESTIMATION

We arrive now at the most general case of this com-
parison between causal and unitary approaches. As
stated in the Introduction, in a real backward adaptive
scheme, the coder should attribute the bits on the basis
of Ryaxs = Rxaxa + AR= L 5K XIX". Asin the
previous section, we assume independent identically diﬁ—
tributed reilAvectori X;. The estimated transform is 7',
such that TRxax<«T7 is a diagonal matrix, which cor-
responds to the estimated variances of the transformed
signals. If we continue denoting by 0' , the actual vari-
ances of the transformed signals (obtamed by applymg

T to X), the expected distortion obtained with T using
K quantized vectors is

o~

-
(TRxqxaTT);;

I

—alrt yrogs g EERene %1 ~
xaxaeT")ii) ( RXXTT)u‘,
(10)

where the subscripts ¢ and K refer to the presence of

quantization and estimation noise, and the constant ¢
assumes Gaussianity of the transformed signals. Equa-
tion (10) must be evaluated for the Identity, KLT and

As in Section 3, the computation of

(10) in the causal case will provide an upper bound for

the distortion because of the uniform quantization noise

feedback upon the y;. The details of the calculations
will be skipped in the following for lack of space but can
be found in [5]. Simulation results of these theoretical

results are presented in Section 6.

5.1

In this case the transformed signals y; are indeed still
Gaussian. Under the high resolution assumption, the
expected distortion (10) for Identity with quantization
and estimation noise is, for sufficiently high K

Identity Transformation

It It . _ 1/N
BIY It x.q) = ENIY (77 (det(I + o] (diag{ Rxx})~"))
{1—}—%{1— tr{ququq]—VlQRXQXqu—l}}_aﬁqtr{(diagRXqu)—lj.
(11)

5.2 KLT

In this case also, expression (10) with T=V gives the
exact expression of the distortion since each transform
coefficient is a linear combination of Gaussian r.v.s..



Evaluated in the unitary case, this distortion with quan-
tization and estimation noise may be approximated as

- - _{W1/N
E||Y||2A~ )& B|IY Iy (det( + o5 (Rxx)™"))
x {1+ [N Lo NL] - See((A) 1y
(12)
where A9 = VRBxaxaV?T = A+ 0'2]. With D? =

diag{Rxax4«}, one can show that the corresponding ex-
pression for the coding gain is

BIIY |12 o (det(I+02 (diag{Rxx})~"))""

G~ (V,K,q) o~ 7
V.K 2 cx)-1)) MY
(v, 7q) E|Y]2 & q) (det(I-l-og(RAA) 1))

r q—
{H—%( 1t {ququ

N2

o DI—1 o2
FixaxeD H—%tr{(dmgﬂmq)—l}}

X

e . U

(13)

5.3 LDU
In the causal case, an estimate L' of Lis computed, and

each r.v. is not purely Gaussian :
i—1 i—1
Yik = Tik — E Lijzi_jk — E Lijgi—ji. (14
ij=1 j=1

Similarly as in (7), the expected distortion for the LDU

1Y ]2~ is upper bounded by the rate-distortion
(L',K,q)

function of a set of Gaussian r.v.s of same variances 05,,
i

that is

o ~

@’ RX‘IXQL )i
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(15)
with o2 (L Ryaxal'T — O'ZI)” Thus, computing
(10) When the transformation is based on K quantized

vectors (for high K and under high resolution assump-
tion) gives an upper bound, which is

0'

BIVIZ, ., < BIV IR (det(7 + o2 (Rxx) =) "™
[ L4 2] Sl ],
(16)

where Ryy = L.’RXquL.IT. The corresponding expres-
sion for the coding gain in the causal case is then lower

bounded by

G ~ _ E”:)?”?I,K,q) > GO (det(I-I-o' (diag{Rx x })~ ))I/N
(L% Kq) BIVIZ (det(I‘Ff’q(RXX) 1))1/N

(L' K,q)

2
1 tr{RxqxqD? "RyqxqD1"'} o ) -1
{H'F{ A2X ~Z XAX —wttr{(diagRxqxq)” '}

X 2

L—Qtr{(R;y>—1}}

{1+%[N;1+N§1]—

(17)
As in Section 3, since the r.v. y; tends to be Gaussian
very quickly as ¢ grows, the bound in (17) is a fairly
precise measure of the actual coding gain G(L, K.q) for
reasonably high N.

Indeed, it can be checked that the expression (17) and
(13) tend to (5) and (8) respectively as K — oo, and
both tend to (9) as 0'5 — 0.

6 SIMULATIONS

For the simulations, we generated real Gaussian i.i.d.
vectors with covariance matrix Rxx = HRamH7T.
Rag1 1s the covariance matrix of a first order au-
toregressive process with normalized correlation coef-
ficient p. H is a diagonal matrix whose ith entry is
(N—i+ 1)1/3. We assumed entropy constrained scalar
quantizers ); with high resolution rate-distortion func-
tion 0'51 = ”6—82_2“0'51. Thus, the Gaussianity of the
transform signals was assumed in all cases. The coding
gains in presence of estimation noise and quantization
are compared for LDU and KLT in Figure 2, for N = 8§,
p = 0.9 and a rate of 3 bits per sample (mean over
100 realizations). The theoretical gains are given by

(13) and (17).  The observed behavior of the trans-

Coding Gains for KLT and LDU - ARL1 : rho=0.9 — N=8 — Decreasing variances — 100 realizations — 3b/s
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Figure 2: Gains for KL'T and LDU vs K.

formations corresponds quite well to the theoretically
predicted one for K = a few tens.
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