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ABSTRACT

This paper deals with an approach to Automatic Lan-
guage Identification based on rhythmic and fundamen-
tal frequency modeling. FEzrperiments are performed on
read speech for 5 European languages. They show that
rhythm can be automatically extracted and is relevant
in language identification: using cross-validation, 79%
of correct identification is reached with 21 s. utterances.
The fundamental frequency modeling, tested in the same
conditions (cross-validation), produces 50% of correct
identification for the 21 s. utterances. The Vowel Sys-
tem Modeling gives an identification rate of 70% for the
21 s. utterances. Last, merging the three models slightly
improves the identification rate.

1 INTRODUCTION

During the last decade, the request for Automatic
Language Identification (ALI) systems arose in sev-
eral fields of application, and especially in Computer-
Assisted Communication (Emergency Service, etc.) and
Multilingual Man-Computer Interfaces (Interactive In-
formation Terminal, etc.). More recently, content-based
indexing of multimedia or audio data provided a new
topic in which ALI systems are useful. However, cur-
rent ALI systems are still not efficient enough to be
used in a commercial framework. In the standard up
to date approach, sequences of phonetic units (provided
by a phonetic modeling system) are decoded according
to language-specific statistical grammars [1]. This ap-
proach, initiated at the beginning of the 90s, is still the
most efficient one. However, only marginal improve-
ments have been performed for five years, and it seems
crucial to propose new approaches. In this paper, we
investigate the way to explicitly take phonetics into ac-
count and to take advantage from alternative features
also present in the signal: prosodic features, and espe-
cially rhythmic features, are known to carry a substan-
tial part of the language identity (Section 2). However,
their modeling is still an open problem, mostly because
of the nature of the prosodic features. To address this
problem, an algorithm of language-independent extrac-
tion of rhythmic features is proposed and applied to

model rhythm (Section 3). Meanwhile, an other algo-
rithm, based on fundamental frequency contours, com-
putes statistics on these outlines in order to model in-
tonation (Section 4). These algorithms, coupled with a
Vowel System Model (VSM) are tested on the five lan-
guages of the MULTEXT corpus in section 5. The rel-
evance of the rhythmic parameters and the efficiency of
each system (Rhythmic Model, Fundamental Frequency
Model and Vowel System Model) are evaluated. Then,
the possibility of merging these three approaches is ad-
dressed.

2 MOTIVATIONS

2.1 Relevance of Rhythm

Rhythm is a critical characteristic of language in differ-
ent activities (e.g. child language acquisition, language
synthesis), and especially in both human and computer
language identification. Among others, Thymé-Gobbel
and Hutchings pointed out the importance of prosodic
information in language identification systems [2]. With
parameters related to rhythm and based on syllable tim-
ing, syllable duration, and descriptors of amplitude pat-
terns, they have obtained promising results, and proved
that mere prosodic cues can distinguish between some
language pair with results comparable to some non-
prosodic systems. Ramus et al. [3] show that newborn
infants are sensitive to the rhythmic properties of lan-
guages. Other experiments based on a consonant/vowel
segmentation of eight languages established that derived
parameters might be relevant to classify languages ac-
cording to their rhythmic properties [4].

2.2 Relevance of Intonation

Intonation is a seldom employed parameter in language
identification whereas the extraction of Fundamental
Frequency (FO0) is usual in speech analysis. In fact, few
experiments using intonation have already been made in
language identification [5] and the correct identification
rate reached was near 30 % on 10 languages. However,
linguistic studies show that languages should be discrim-
inated by their intonation patterns [6]. Therefore, we
proposed that modeling intonation might be more effi-



cient if we keep the pseudo-syllable timing issued from
the rhythm model for the description of each language’s
intonation patterns.

2.3 Classifying languages according to rhythm
and intonation

Experiments reported here focus on 5 European lan-
guages (English, French, German, Spanish and Italian).
According to the literature, French, Spanish and Italian
are syllable-timed while English and German are stress-
timed. These two categories emerged from the theory of
isochrony introduced by Pike and developed by Aber-
crombie [7]. However, more recent works based on the
measurement of the duration of inter-stress intervals in
both stress-timed and syllable-timed languages provide
an alternative framework in which these two binary cate-
gories are replaced by a continuum [8]. Rhythmic differ-
ences between languages are then mostly related to their
syllable structure and the presence (or absence) of vowel
reduction. The controversies on the status of rhythm
in world languages illustrate dramatically the difficulty
to segment speech into correct rhythmic units. Even if
correlates between speech signal and linguistic rhythm
exist, reaching a relevant representation seems to be dif-
ficult. Another difficulty rises from the selection of an
efficient modeling paradigm. We develop here a statis-
tical approach, first introduced in [9] and now improved
by considering stress features (Fundamental Frequency
and Energy). It is based on a Gaussian modeling of the
different rhythm wunits automatically extracted from a
rhythmic segmentation in the languages.

3 DESCRIPTION OF THE SYSTEM

A synopsis is displayed in Figure 1. A language-
independent vowel detection algorithm is applied to la-
bel the speech signal in Silence/Non Vowel/Vowel seg-
ments. The rhythmic pattern is derived from this seg-
mentation, as we try to obtain a syllable-like segmen-
tation. Then, this segmentation is used to compute
statistics over the fundamental frequency outlines for
each syllable. Afterward, computation of cepstral coef-
ficients for the vowel segments leads to language-specific
Vowel System Models (VSM) while the rhythmic pat-
tern derived from the segmentation is used to model the
rhythm of each language.

3.1 The Vowel/Non Vowel segmentation algo-
rithm

This algorithm, based on a spectral analysis of the sig-
nal, is described in [10]. It is applied in a language and
speaker independent way without any manual adapta-
tion phase. This processing provides a segmentation of
the speech signal in pause, non-vowel and vowel seg-
ments. Due to the intrinsic properties of the algorithm
(and especially the fact that transient and steady parts
of a phoneme may be separated), it is somewhat incor-
rect to consider that this segmentation is exactly a Con-

sonant/Vowel segmentation. However, it is undoubt-
edly correlated to the rhythmic structure of the speech
sound, and in this paper, we investigate the assumption
that this correlation enables the definition of a statisti-
cal model to discriminate languages according to their
rhythmic structure.
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Figure 1 - Synopsis of the system for N languages.

3.2 Vowel System Modeling

Each vowel segment is represented with a set of 8 Mel-
Frequency Cepstral Coefficients (MFCCs) and 8 delta-
MFCCs, augmented with the Energy and delta Energy
of the segment. This parameter vector is extended with
the duration of the underlying segment providing a 19-
coefficient vector. A cepstral subtraction performs both
blind removal of the channel effect and speaker normal-
ization. For each recording sentence, the average MFCC
vector is computed and subtracted from each coefficient.
For each language, a Gaussian Mixture Model (GMM) is
trained using the EM algorithm. The number of compo-
nents of the model is computed using the LBG-Rissanen
algorithm [11]. During the test, the decision lays on a
Maximum Likelihood procedure.

3.3 Rhythm Modeling
3.3.1 Rhythmic units

Syllable may be a first-rate candidate for rhythm mod-
eling. Unfortunately, segmenting speech in syllables is
typically a language-specific mechanism and thus no
language independent algorithm can be derived. For
this reason, we introduced in [9] the notion of pseudo-
syllables derived from the most frequent syllable struc-
ture in the world, namely the CV structure [12]. In the
algorithm, speech signal is parsed in patterns matching
the structure: .CnV. (where n is an integer that may
be zero and V may result from the merging of consecu-
tive vowel segments). For example, if the vowel detec-
tion algorithm produces the sequence (CCVVCCVCVC-



CCVCVCCQ), it is parsed in the following sequence of
5 pseudo-syllables: (CCV.CCV.CV.CCCV.CV)

3.83.2 Pseudo-syllable description

For each pseudo-syllable, three parameters are com-
puted, corresponding respectively to the total consonant
cluster duration, the total vowel duration and the com-
plexity of the consonantal cluster. For example, the de-
scription for a .CCV. pseudo-sequence is:

Pccov. = {D¢ Dy N¢}

where D¢ is the total duration of the consonantal seg-
ments, Dy is the duration of the vowel segment and
N¢ is the number of segments in the consonantal clus-
ter (here, No = 2). Additionally, one parameter re-
lated to the stress structure of the language (Energy in
dB, normalized among the sentence) is also considered.
Our hypothesis is that this parameter may improve the
discrimination of stress-timed languages. Such a basic
rhythmic parsing is obviously limited, but provides a
framework to model rhythm that requires no knowledge
on the language rhythmic structure

3.8.8 Statistical Rhythm modeling

For each language, a GMM is trained, either by using
the standard LBG algorithm or the LBG-Rissanen algo-
rithm to provide the optimal number of Gaussian com-
ponents.

3.4 Fundamental Frequency Modeling
3.4.1 Extraction of fundamental frequency contours

To extract the outlines, we used a tool called “MESSIG-
NATIX” developed by the Laboratoire Parole et Lan-
guage in Aix-en-Provence (France) [13]. This tool al-
lows to extract the fundamental frequency outlines with
three different approaches: Average Magnitude Differ-
ence Function (AMDF), spectral comb, autocorrelation
and an overall of the three. We computed the contours
with the overall method, using spline interpolation to
obtain values every 10ms, even on the unvoiced seg-
ments.

3.4.2 Features Extraction

The fundamental frequency outlines are used to com-
pute statistics inside of the same pseudo-syllable fron-
tiers than those used for rhythm modeling, in order to
model the intonation of each pseudo-syllable. We choose
to compute statistics until 4th order (mean, standard
deviation, skewness and kurtosis), in order to describe
the variations of intonation within a pseudo-syllable.

3.4.8 Statistical Modeling

For each language, as for rhythm modeling, a GMM
is trained by using the standard LBG algorithm or the
LBG-Rissanen algorithm to provide the optimal number
of Gaussian components.

4 EXPERIMENTS

4.1 Corpus

Experiments are performed on the MULTEXT corpus
[14]. This database contains recordings from five Euro-
pean languages (English, French, German, Italian and
Spanish), pronounced by 50 different speakers (5 males
and 5 females per language). Data consist of read pas-
sages of about five sentences extracted from the EU-
ROML1 speech corpus (the mean duration of each pas-
sage is 20.8 seconds). The raw pitch contour of the sig-
nal is also available. A limitation is that the same texts
are produced by a mean of 3.75 speakers. This leads to
a possible partial text dependency of the models. Due
to the limited size of the corpus, language identification
experiments are performed using a cross-validation pro-
cedure: 9 speakers are used to train the models of one
language and the tenth speaker is used to perform the
test. This procedure is iterated for each speaker, and
for each language.

4.2 Rhythm Modeling

Table 1 summarizes the experiments performed with the
rhythm parameters. The identification scores displayed
are averaged among several GMM topologies and ob-
tained using the whole duration of the test excerpts
(about 21 seconds).

Parameters Mean Identification Rate
Dy + D¢ 65 %
Dy + Do + Ng 75 %
Dy + Do + No + E 79 %

Table 1 - Results in cross-validation experiments with
rhythm modeling.

The use of duration parameters Dy and D¢ results
in a 64.8 % of correct identification. The use of ad-
ditional parameters related to the complexity of the
pseudo-syllable structure (N¢) and to the stress (E) sig-
nificantly improves the results, reaching 79 % of correct
identification.

4.3 Fundamental Frequency Modeling

Table 2 summarizes the experiments performed with the
statistical FO parameters.

Parameters Mean Identification Rate
Skewness + Kurtosis 53 %
Mean+ Var+Skew+Kurt 47 %

Table 2 - Results in cross-validation experiments with
fundamental frequency modeling.

These results show that keeping the pseudo-syllable
segmentation is relevant for modeling fundamental fre-
quency patterns. Using only high order moments seems
to better describe the variations of intonation, as far as
the best results (53 %) are obtained with only skewness
and kurtosis. Using all parameters including mean and
variance decreases the identification rate to 47 %.



4.4 Vowel System Modeling

The Vowel System modeling results in an identification
rate of 70 % with 21 seconds of signal.

4.5 Integrating Segmental, Rhythm and Fun-
damental Frequency Modeling

A simple statistical merging is performed by adding
the log-likelihoods of both the Rhythm model, the FO
model, and the Vowel System model for each language.
Merging the results given by the three models only re-
sults in a small 5% improvement, increasing the identi-
fication rate to 84 %. Anyway, if only a little improve-
ment is observed, at least no degradation results from
the statistical merging.

Parameters Mean Identification Rate
Rhythm+F0 82 %
FO+MFCCs 74 %
Rhythm+MFCCs 83 %
Rhythm+F0+MFCCs 84 %

Table 3 - Fusion of Rhythm, FO and Cepstral

parameters.

5 DISCUSSION

We propose in this paper three algorithms dedicated to
automatic language identification. Experiments, per-
formed with cross-validation, show that it is possible
to achieve an efficient rhythmic modeling (78% of cor-
rect identification) in a way that requires no a priori
knowledge of the rhythmic structure of the processed
languages. Besides, the FO model gives 53 % of correct
identification, whereas 70 % of correct identification is
obtained with the Vowel System Model.

With these read data, merging the three approaches
results in a slight improvement. However, rhythm fea-
tures may be less sensible to spectral degradation and
then be more useful with lower quality data, meanwhile
the FO model might be more efficient with spontaneous
speech. Furthermore, the fusion method used here is
very simple and requires an extremely low computa-
tional cost. Using more complex methods should in-
crease the identification rate.

a0 84
79 82 83
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60 53

Rhythm FD MFCCs Rhy+FO  Rhy+MFCCs FO+HWFCCs Fusion
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Figure 2 - Results obtained for each parameter, and
merging of the three approaches.
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