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ABSTRACT

This pape& propsesa multiresoldion Matching Pursuitde-
compsitionof natual images.Matchirg Pursuitis agreeq
algoithm that decanposesary signalinto a linear expan-
sion of waveforns takenfrom a redundantdictionay, by it-
eratvely picking the waveform that bestmatche the input
signal. Sincethe computationalcostrapidly grows with the
sizeof thesignal,we propsea multiresdution stratgy that,
togetter with a dictionary training, significantlyreduceshe
encodng compleity while still providing an efficient rep-
resentation Sucha decanpositionis perceptally very ef-
fective atlow bit ratecoding thanis to similiaritieswith the
HumanVisual Systeminformationprocessing.

1 INTRODUCTION

Matchirg Pursuituseis spreathg in imageandvideo cod-
ing dueto its good prdfile in very low bit-rate applicatiors
[2, 4] andin denasing [1]. MP good perfamancein very
low bit-rate applicaions comesmainly from two factos: Its
nontlinearity, which allows to betterrepresena signalwith
a lower number of terms,andits similarity with the Human
Visual Systemwhich will be pointedout further in this pa-
per MP nortlinearity allows for detectinghemaincontairs
of animagewith averylow nunmberof terms.

2 MATCHING PURSUIT

2.1 Thealgorithm

Thebasisof MatchingPursuitcanbefoundin Mallat [9] and
Mallat andZhang[10]). They defineMatchingPursuitasa
greedy algorithm that decomposes any signal into a linear
expansion of waveforms taken from a redundant dictionary.
Thesavaveformsareiteratively choserto bestmatchthesig-
nal structuresprodicing a sub-ogimal expansion. Vectors
areselecteaneby onefromthedictionay, while optimizing
the signalapproimation (in termsof enepgy) at eachstep.
Eventhoudh theexpansionis linear, it givesanondinearsig-
nal deconposition.

LetD = {g,},er beadictionaryof P > M; x M, vec-
tors, having unit norm This dictionay includes M ; x M,
linearly indepenlentvectos thatdefinea basisof the space
CM: xM: of signalsof sizeM; x M,. Let R" f betheresid-
ual of ann termrepresentatiorof agivensignal f.
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A Matching Pursuitis aniterative algorithm that subde-
commsestheresidie R™f by projeding it on a vectorof D
thatmatchesk™f atbest. If we consicer R?f = f first MP
iterationwill represetnthe signalas:

f=Rf ={f,9v)97 + R'f, 1)

whereR! f is the residualvector after appoximating R° f
in the directionof g,,. SinceR! f is orthayonalto g,,, the
module of f will be:

IRFI1? = [{R° £, 940)I” + 1R £ )
As thetermthatmustbe minimizedis theerror|| R f||,
IR 117 = IR°FII* — (R £, 920) % @)

the g, € D to be chasen is the one that maximizes
[{R°f, go)], OF, generdizing, [{R™f, g,.)|. In somecasest
is not compuationally efficient to find the optimd solution,
andasubopimal solutionis compuedinstead:

[(R™ f, gvo)| = asup [(R" f,9,)|, (4)
~yel’

where a€(0, 1] is anoptimality factorwhichis 1 when
the optimal solution hasbeenchosen This subopimality
factora will depenl on the searchig methodusedto find
thesolution(seesection3 for anexanple).
From (1), one easily seesby inductionthat the N term
deconpositionof f is givenby:
N-1

f=Y (R"f,9y.)9v. + RV f ()
n=0

andwith the sameprinciple we canalsodediwcefrom (2) that
the L? nom of thesignal f is:

N-1
IF11P =" KR, 900" + IRV I, (6)
n=0

where||R¥ f||, whendealingwith finite dimensionsignals,
converges exponentially to 0 when N tendsto infinity and
M, x M, isfinite (see[7] for aproof).

MatchingPursuitcodingefficiency is highly depelenton
the dictionary adaptatio to the signalto repesent. In the
next sectionwe describea generalframevork for handlirg
geonetric dictionary constretion.



Figurel: Anisotragpic refinenentatomsversuslisotropc Ga-
boratoms.Anisotropy (rightimage)givesbettercortourres-
olution.

2.2 Properties of Matching Pur suit

MP propertiescanbedividedin two differentkinds: proper-
tiesthatareintrinsicalto thealgorithm nomatterwhichkind
of functiors have beenusedo performthesignaldecompsi-
tion, andpropetiesthatdepend of thedictionary (they appear
only if thedictionary usedhasthemaswell).

The main propertiesderived directly from the Matching
Pursuitalgorithm areinvertibility (if thedictionaryis atleast
compete), energy conservation (thatcomesfrom Eq. 6 and
theinvettibility property)andovercompleteness, whichgives
robustness to quantization (due to the fact that the coding
spaceis of higher dimensionthanthe signalspace)and ex-
ponentially bounded error decay (whichimpliesafastinitial
erra decay.

Most of the otherpropertiesdepenl on the dictionay at
hand In particular covariance with respectto geonetric
transfamationsis a very desirale feature. Let us quicky
explain agenericway of achieving sucha corstruction.

Supmsewe have a growp of geanetrictransfornationsG
togetrer with a unitaryrepresentatiol/ of G in the Hilbert
spaceof our signalsH. It is aclassicakesultof group repre-
sentatiortheory[3] thatthedictionay

D ={U(v)g, ¥y € G}

is adensesubspae of H for ary g € H. Thisdictionay is
invariant underary geomdric transfamationin G by con-
struction Moreoverthe MP exparsionof ary defamedsig-
nal is very simply relatedto the expansionof the original
signal:

—+o0o
UM =Y (Gyal B )Gy

n=0
whereo dendesgroyp compgaition. Summarizig, we have
competeinvarianceof the MP exparsionwith respecto ge-
ometic transfornations.Grouptransfomationscanbecom-
bined with more gener& manipuation for creatingspecial
dictionaries. Supmsewe createa dictionay by applyirg
both a unitary growp represetation &/ and anotter unitary
opentor R, to ageneréing functiong :

D={U(Y) Rog¥y€E G ae A} . @

Thenthis dictionarywould still benefitfrom the invariance
prapertiesof G. A vely fruitful exampe usedthroudhoutthe

remainng of this paperis obtairedby takingG ascompesed
of translatios androtatiors andexterdedasin Eq. (7) with
anisotrgic dilations ;

1 Ty
R(a1,a2)g(z,y) = Jaras? ((11 ; a2) :
This dictionay is theninvariart uncder translatiors, rotatiors
andisotropic scalinga; = as. In ourcasehedictionaryused
is compasedof Anisotrqpic Refinementatoms. The basic
fundion is a Gaussiarnn oneaxis andthe secondderivative
of theGaussiarnn the otheraxis[13]:

9 (2,y) = (2 — 42?)eT (&H0), ®)

This particdar setof atomsis very well suitedfor represent-
ing smoothcontousin imagesasalreadypointedoutin [13]
andthisfactis alsoillustratedon Figure 1.

3 EVOLUTIONARY MATCHING PURSUIT

The useof a redundantbasisthrough MP seemsnteresting
from animagerepresentatiorpoirt of view, but it represets

aheary compuationalcost. In fact,whendealingwith large
dictionaies,the compuationof a scalamproduct of evety el-

ementof the dictionay andthe signalto representandtake

the atomwith the largestprojecticn enegy beconesalmost
impossible.In this scope the useof efficientapproxmation
tools,suchasGeneticAlgorithms,is neead.

GA do not give the optimal solution, but an apprxima-
tion. This fact, though, doesnot represent problemwhen
dealingwith MP decomjpsition. It will, of course,causea
decreae of quality in the final MP repiesentationput this
lossof quality is negligible compaed to the computational
gainobtained

The GA usedhereis a simplealgorithmthathasdemon
stratedto bewell adaptedo the need of this concetecase.
It hasa popuation formed by a certainodd numker N of
individuals.Eachindividualis in factonedictionarycompe
nent,andit is compsedby five gene (which aretheparam
etersthatdefinethe dictionay compament,so, positionin z
andy, scalingin 2 andy androtation). At every gereration,
theseindividuals are evaluaed and only the fittest (the one
thathashigher scalarproduct norm) passedo the next gen-
erationwithout change. The restcompée in pairs,andthe
winnerof every pairis placedin a matchingpool. Theindi-
vidualsin thematchingpool arerancmly crossed-eer, and
their descendnts(% individuals) are placedat the next
geneation togetherwith % mutatiors of the fittest. The
evaludion procesds repeatedintil a desirederra threshdd
or a certainnumker of geneationshasbeenreachedsee|[8]
for adetaileddescrigion of GA).

4 MULTIRESOLUTION MATCHING PURSUIT

As the searchfor the optimal function meanscomputing a
greatamount of scalarprodicts betweenimages,MP hasa
very high computationalcost,which directly depend onthe
imagesize. To speedcodirg, a multiresdution schemehas
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Figure2: Multiresoluion MP scheme.
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Figure3: Compaison of two MP codedimages.Left image
hasbeencodedwith onelayerMP (PSNR=257/987dB) and
theright onewith multiresolutionMP (PSNR=26.006 dB).

beenchosen.In this schemetheimageis downsampledoy
two severaltimes. The MP algorithm is first appliedto the
smallestimageandwhenthe desirednumber of coeficients
in thelowestresolutian layerhasbeenreache, arecompmsi-
tion of the next level image(dowle size)is performed This
reconpositionis doneby takingadwartageof the dictionay
covarianceto dilations(seesection2.2). The subtration of
this reconpositionto the next resolutionlevel imageis per
formed, and MP is appliedto this residual(seeschemen
Fig. 2).

Multiresoluion MP normally givesbetterresultsthatone
resolution MP (seeFig. 3), basicallybecase multiresdu-
tion decraseghe nunber of atomsin the dictionagy for the
searchig algoithm (thescalingfactoris now boundedto the
smallestimagesize). With the samenuntber of geneations
in the GA, theobtairedsolutionis thuscloserto the optimal.
A clearstudy of GA paranetersat eachlevel of resoluion
hasgot to be performed The optimal numter of termsin
the MP expansionat eachresolutionis alsocurrerly investi-
gated

5 MPINALEARNT DICTIONARY SET

As the MP dictionary usedhereis highly redurdant, some
of the functions are hardly ever used,they canbe rejected
(asdoneby Neff andZakhor in [11]). Therejectionof these

‘
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Figure 4: Compariso of two images having 420 coef-
ficients. Left imageis codeal with the whole dictionay
(PSNR=31.294 dB), and the right one with a subsetof
64 functiors, learntfrom MP decanpositionof tenimages
(PSNR=29.315dB).

L

PSNR (MP with 420 coefficients)

Figure5: Graplic of thePSNRevolutionwith thediminution
of thesizeof thesubset.

funcionswill giveamorecompactepresentatiorandreduce
thebit-rateto codeanimage.Oneway of doing it is decom
posinga repesentatie nunber of imagesin the whole dic-
tionary andthentrainthedictionaly from thedeconposition
of theseimages.Then MP canbe appliedin a learntsubset
of functions. This gives highe compessiorrates(anatomis
justrepreseted by anindex in alist). It will alsospeedhe
MatchingPursuitprocessbecausegherewill belesselemers
to compae.

A possiblelearnirg rule for the subsetouldbeto choose
theatomsthatapper moreoften. So,if asubdictiorary of M
atomsis desiredthefirst M atomsthatmostoftenappeain
arepresentatve setof MP decanpositiors would bechosen.
This, thoudh, givesanincorrectresult,becase someatoms
thathave a very smallimpactin the final resultarechosen.
Thereasoris thatthe atomsthatapper more oftenareusu-
ally the onesthatcomeafterahigh numbe of iterationsand
theenepy they bring to thefinal resultis very small.

To avoid this, alearningrule basedntheenegy theatom
gives to the final recorstructionhasbeenused. The new
learnirg rule will selectthe first M atomsthat have higher
enepgy. Oneexanple of MP decomjositionusinga 64 atoms
subsets shavnin figure4.

Thequality of theimagecodedin a subsewill depe on
thenumter of atomsthis subsehas.Intuitively, imagequal-
ity will increasewith thesizeof thesubdictimaryused.This
is true whenusingan algorithm which finds the optimal so-



lution, but the useof a suboptim& minimizaion algoithm

changs this logical evolution. Decreasinghe numker of

functionsin thechesensubsemeangeducirg the searchig

space. Logically, whenrediwcing the searchingspace with

thesamecompleity in theappraximationalgorithm the so-
lution found will becloserto therealone.With the GA used
in thescopeof this paper, and128x128imagesthebestcom-
promisesubsesizeverstis algorithmaccuagy hasprovedto

bewhentakinga 64 atomssubse{seeFig. 5).

6 SIMILARITIESOF MRMP AND HVS

Multiresoluion MatchingPursuit(MRMP) sharessomein-
terestingpropertieswith the HumanVisual System(HVS).
These similarities explain, to some extert, why MRMP
codedimagesoften have a bettervisual quality than their
waveletor DCT equivalentevenfor lower PSNRvalues.

MRMP similaritieswith the HVS comein two main fla-
vors : thosedirectly coming from the algoiithm andthose
depewing ontheparticulardictionay used.

Oneof the first goalsof the HVS is to perform a sparse
codirg of visualinformation[12]. By natureMRMP yields
a very sparsecoding of imagessince, as alreadypointed
befae, PSNRincreasesquicky with the number of coefi-
cientsusedin the exparsion. In fact MRMP seeksparticu-
lar structuresn theimageandwill recusively extractthem
from the data. At very low bit rates,or for few coeficients,
the selectedatomstendto be independen from eachother
This gainin informationwill of coursesaturateasthe num-
ber of termsgetsbigger, but quickly yieldsa goad andvery
sparsapprximationof thedata.In thisway MRMP is more
orierted towardsmeanimgful structueswherewaveletsand
DCT merelyseepixds.

Concerimng thedictionary, severallinks with the HVS can
behighlighted.Firstwe know thatvisualinformationis sub-
mitted to a chain of processing At an early stageretinal
garglion cells detectcontous using a strategy that mimics
the zero-cpossingsof a Laplacianpyramd. At later stages
theinformationis processedn the primary visualvisualcor
tex (areaV1) by several neual cells. Among these,Sim-
ple Cells have a recepive field that hasbeenshawvn to be
well appoximatedby Gaborfilters [6]. They are sensitve
to the position,scaleandorientdion of stimuli. Now in the
MRMP algorithm preseted in section4, the imageis first
deconposedatlow resolutionandthis coarseappraimation
is subtractedrom a finer level of the pyramid. This result
in a schemesimilar to the Laplacianpyramid of Burt and
Adelson[5] andthus mimics the early proessingstageof
the HVS. Thenat eachresolution, MRMP usesa dictionay
of atomsthat are sensitve to the position, scaleand local
oriertation of contous, which againresemble someof the
pracessingachieved by SimpleCells. Finally the anisotrgic
scalingof our dictional allows usto represenhcontaur in-
formation with few atomsby locally stretchingthe atomin
the directionof the edge,while we refineit in the diredion
of thegradent.

7 CONCLUSIONS

WeintroducedMRMP, analgorithmthatusesMatchingPur
suitin a multiresoluion fashionwith a dedicatedlictionay
of scale-cwariantatoms.Sparsecoding of natual imagesis
achieved within our algorithmby usinga mixture of proper
tiesthat mimic sparsestructue codingin the HumanVisual
System. This allows to obtainsuperio visual quality when
comparedto traditiond lineartransfoms suchaswaveletor
DCT.

Sucha techniaqie, though at a preliminary stage,might
yield very interestingresultswhen comhbined with efficient
codirg stratgiesfor very low bit rateimagecompession.
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