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ABSTRACT

Most of the current Second Order (SO) and Higher Order (HO)
blind source separation (BSS) methods aim at blindly separating
statistically independent sources, assumed zero-mean, stationary
and ergodic. However in practical situations, such as in
radiocommunications contexts, the sources are non stationary
and very often cyclostationary. In a previous paper [4] the
cumulant-based BSS problem for cyclostationary sources has
been analysed assuming zero-mean sources (linear modulations).
The non zero-mean case (some non linear modulations) has been
considered recently in [5] for the current SO BSS methods. The
purpose of this paper is now to analyse the behavior and to
propose adaptations of the current HO BSS methods for non zero-
mean cyclostationary sources.

1 INTRODUCTION

For more than a decade, SO [1] and HO [2] [3] blind
methods have been developed to separate statistically
independent sources, assumed zero-mean, stationary and
ergodic. However, in many applications such as in
radiocommunications contexts, the sources are non
stationary and very often cyclostationary (digital
modulations).

For this reason, in a previous paper [4], the behavior of
the current SO and Fourth-order (FO) cumulant-based BSS
methods has been analysed for cyclostationary sources,
assumed zero-mean, assumption which generally holds for
linear modulations in particular. In this context, the current
SO methods have been shown to be not affected by the
cyclostationarity of the sources contrary to the FO ones
which have been shown to be strongly affected in some
cases by this property.

Nevertheless, some cyclostationary sources used in
practice are not zero-mean but are first order
cyclostationary, which is in particular the case for some non
linearly modulated digital sources such the CPFSK sources
with an integer modulation indice [5]. For this reason, the
behavior analysis together with adaptations of the current
SO BSS methods for first and second order cyclostationary
sources has been presented recently in [5] .

To complete this analysis,  the purpose of this paper is
now to analyse the behavior and to propose adaptations of

the current HO BSS methods [2-3], such as the JADE
method [2], for non zero-mean cyclostationary sources.

2 PROBLEM FORMULATION

A noisy mixture of P statistically independent narrow-
band (NB) sources is assumed to be received by an array of
N sensors. The vector, x(t), of the complex envelopes of the
signals at the output of the sensors is thus given by

        x(t) = ∑
=

P

p 1

 mpc(t) ap + b(t)  =∆ A mc(t) + b(t)          (1)

where mpc(t) = mp(t)e
j(2π∆fpt + φp) is the p-th component of the

vector mc(t), mp(t), ∆fp, φp and ap correspond to the complex
envelope, the carrier residu, the phase and the steering
vector of the source p respectively, A is the (NxP) matrix
whose columns are the vectors ap. The noise vector, b(t),
assumed stationary and zero-mean, is normally distributed,
spatially white and independent of the sources.

The classical HO blind source separation problem [2-3]
consists to find, from both the SO and the HO statistics of
the observations, the (NxP) Linear and Time Invariant
source separator W, whose (Px1) output vector
y(t) =∆ WH x(t) corresponds, to within a diagonal matrix Λ
and a permutation matrix Π, to the best estimate, m̂c(t), of
the vector mc(t).

3 HO BLIND SOURCE SEPARATION OF ZERO
MEAN STATIONARY SOURCES

3.1 Statistics of the data

For stationary sources, the SO correlation matrix, Rx,
of the data is given by

      Rx =
∆ E[x(t) x(t)H] = A Rmc A

H + σ² I       (2)

where I denotes the (NxN) identity matrix, σ² is the input
noise power per sensor, Rmc =∆ E[mc(t)mc(t)

H] is the
correlation matrix of the vector mc(t), diagonal for zero-
mean statistically independent sources.

 In a same way, the quadricovariance, Qx, of the data,
such that

    Qx[i, j, k, l]  =∆ Cum(xi(t), xj(t)
*, xk(t)

*, xl(t))  =

     E[xi(t)xj(t)
*xk(t)

*xl(t)] − E[xi(t)xj(t)
*]E[xk(t)

*xl(t)] −



   E[xi(t)xk(t)
*]E[xj(t)

*xl(t)] − E[xi(t)xl(t)]E[xj(t)xk(t)]
*      (3)

is given by

Qx = (A⊗A*) Qmc (A⊗A*)H         (4)

where ⊗ is the Kronecker product and Qmc is the
quadricovariance of  mc(t).

1.2 Philosophy of the JADE method

The current JADE method [2] aims at separating the
sources from the blind identification of the A matrix. This
requires the prewhitening of the data which orthonormalizes
the sources steering vectors so as to search for the latter
through an unitary (PxP) matrix U simpler to handle. If we
note z(t) the prewhitened observation vector, the matrix U is
chosen so as to jointly diagonalize the P eigenmatrices of
Qz, the quadricovariance of z(t), associated to the P non
zero eigenvalues and weighted by the latter, where Qz is
given by

Qz =  (A’⊗A’ *) Qmc’ (A’⊗A’ *) H        (5)

where A’  is the (PxP) unitary matrix of the prewhitened
source steering vectors and Qmc’ is the quadricovariance of
mc’(t), the normalized vector mc(t) such that each
component has a unit power. Under some weak conditions
[2], it is easy to verify that the unitary matrix A’ is, to within
a permutation and an unitary diagonal matrix, the only one
which jointly diagonalizes the set of previous eigenmatrices.

1.3 Implementation of the JADE method

In practical situations, the SO and FO statistics of the data
have to be estimated, by temporal averaging operations,
using the ergodicity property of the data. Under this
assumption, noting x(tk) or x(k) the k-th sample of the
observation vector x(t), the empirical estimator M̂x      

ε(νn)[νn] of
Mx      

ε(νn)[νn] =
∆  E[xi1(t)

ε1 xi2(t)
ε2 … xin(t)

εn] from L independent
data snapshots, is defined by

         M̂x      
ε(νn)[νn] =

∆ ∑
=

L

lL 1

1
xi1

(tl)
ε1 xi2

(tl)
ε2… xin

(tl)
εn   (6)

where νn =
∆ (i1, i2,…, in) (1 ≤ ij ≤ N) and ε(νn) =

∆ (ε1, ε2,…,
εn) with εi = ± 1 and such that xi(t)

−1 = xi(t)
∗ and xi(t)

1 =
xi(t). From (6), we deduce the empirical estimators of the
SO and FO statistics of the data by replacing in the
expressions (2) and (3) respectively the true SO and FO
moments by their estimates (6). It is well known that for
stationary and ergodic observations the empirical
estimators, R̂x and Q̂x, of Rx and Qx becomes asymptotically
unbiased and consistent.

2 HO BSS FOR NON ZERO-MEAN
CYCLOSTATIONARY SOURCES

2.1 Statistics of the data

We now assume that the sources are cyclostationary
even at the first order.

4.1.1. First order statistics

The first order statistic of x(t), given by (1), is defined by

          ex(t) =
∆ E[x(t)] = A E[mc(t)] =

∆  A emc(t)                    (7)

and the first order cyclostationarity property of the sources
implies that

         ( ) ∑ ∑∑
= ∈∈

==
P

p
p

tj
pc

tj
xx

pp

pp eeet
1

22 aee
Γγ

πγγ

Γγ

πγγ           (8)

where ex
γ = < ex(t) e

-j2πγt >c is called the cyclic mean of x(t)
for the cyclic frequency γ, <.>c is the continuous-time
temporal mean operation, Γp defines the set of cyclic
frequencies γp of epc(t) = E[mpc(t)], Γ = U1≤p≤P{ Γp} is the set
of the cyclic frequencies γ of ex(t) and emc(t).

4.1.2. Second order statistics

The vector x(t) has now two Time Dependent (TD)
correlation matrices given by

   Rx(t,ε)  =∆ E[x(t) x(t)εT] = A Rmc(t,ε) AεT +σ²δ(1+ε) I     (9)

where ε = ± 1, with the notation convention presented in
3.3. Introducing the zero-mean vector ∆x(t) = x(t) − ex(t),
the correlation matrices Rx(t,ε) can be written as

       Rx(t,ε)  =  R∆x(t,ε)  +   Ex(t,ε)     (10)

where Ex(t,ε) =∆ ex(t)ex(t)
εT and R∆x(t,ε) =∆ E[∆x(t)∆x(t)εT]  is

given by

      R∆x(t,ε) = A R∆mc(t,ε) AεT +σ²δ(1+ε) I       (11)

where Rmc(t,ε) = R∆mc(t,ε) + Emc(t,ε) with ∆mc(t) =∆ mc(t)
− emc(t), R∆mc(t,ε) =∆ E[∆mc(t)∆mc(t)

εT] and Emc(t,ε) =
emc(t)emc(t)

εT. Moreover, the SO cyclostationary property of
the sources implies that the matrices Rmc(t,ε) and R∆mc(t,ε)
and thus, the matrices Rx(t,ε) and R∆x(t,ε) have Fourier serial
expansions introducing the SO cyclic frequencies of mc(t),
∆mc(t), x(t) and ∆x(t) respectively. In particular we obtain

       Rx(t,ε)  =  ∑
αε

   Rx
αε(ε) ej2παεt        (12)

where R x
αε(ε) = < R

x
(t,ε) e-j2παεt >c is a cyclic correlation

matrix for the cyclic frequency αε. A similar expression is
obtained for R∆x(t,ε) where the cyclic frequenies αε are
replaced by βε.

4.1.3. Third order statistics

The TD third order moments of x(t) which are used in the
following  are defined by

Tx[i, j, k](t)  =∆ E[xi(t)xj(t)
*xk(t)

*]    (13)

and have a Fourier serial expansion given by

       Tx[i, j, k](t)  =  ∑
ν

   Tx
ν[i, j, k] ej2πνt      (14)

where Tx
ν[i, j, k] = < Tx[i, j, k](t) e-j2πνt > is a cyclic third

order moment for the cyclic frequency ν.

4.1.4. Fourth order statistics

The TD quadricovariance of x(t), Qx(t), is now defined by
(3) but where the components xi(t) of x(t) are replaced by
the components ∆xi(t) of ∆x(t).



4.2. Behavior analysis of the empirical estimators

For cyclostationary sources, HO BSS methods such as
the JADE method has to exploit the information contained
in the zero cyclic frequency of the matrices Rx(t,−1) and
Qx(t) [4], i.e. in the temporal means Rx =

∆ <Rx(t,−1)>c and Qx

=
∆ <Qx(t)>c of the matrices Rx(t,−1) and Qx(t) respectively,
empirically estimated as described in 3.3. Note that the
matrices Rx and Qx are defined by (2) and (4) respectively,
where Rmc and Qmc are the temporal mean of Rmc(t,−1)  and
Qmc(t) respectively.

For band-limited, cyclo-ergodic and sufficiently
oversampled observations, the empirical estimator, R̂x, of Rx

becomes asymptotically unbiased and consistent. However,
while for zero-mean independent sources, the matrix Rmc is
diagonal, it is not necessary the case for first order
cyclostationary independent sources for which only the
matrix R∆mc is diagonal while Emc =

∆ <emc(t)emc(t)
H>c may be

not diagonal, which may create an apparent SO correlation
of the sources in the Rx matrix. It is shown in [5] that the
matrix Emc is not diagonal as soon as at least two sources
share a first order cyclic frequency. In this case, the
whitening process of the data required by the JADE
method, and thus the JADE method itself, is affected by the
presence of such sources. This problem has been strongly
analysed in [5] for SO BSS methods and illustrated for
some configurations of CPFSK sources.

Under the same assumptions, it is possible to show that
the empirical estimator, Q̂x, of Qx becomes asymptotically
biased and generates an apparent quadricovariance temporal
mean, noted  Qxa, and such that

    Qxa(i, j, k, l) = Qx(i, j, k, l)  + ∑
α1≠0

 C x
α1(i, l)  C x

α1(j, k) *

   + ∑
α−1≠0

 { R x
α−1(i, k) R x

−α−1(l, j) +  R x
α−1(i, j) R x

−α−1(l, k) }

− 2∑
γ

 ∑
δ

{R x
−(γ+δ)(i, j)ex

γ(k)*ex
δ(l)+R x

−(γ+δ)(i, k) ex
γ(j)*ex

δ(l)

        +  R x
−(γ+δ)(l, j) ex

γ(k)*ex
δ(i) + R x

−(γ+δ)(l, k) ex
γ(j)*ex

δ(i)

        +  C x
(γ+δ)(i, l) ex

γ(j)*ex
δ(k)* + C x

(γ+δ)(j, k)* ex
γ(i) ex

δ(l) }

       + ∑
γ

  {T x
−γ(l, j, k) ex

γ(i)  +  T x
−γ(k, i, l)* ex

γ(j)* 

+ T x
−γ(j, i, l)* ex

γ(k)*  +  T x
−γ(i, j, k) ex

γ(l)}

+  6  ∑
γ

 ∑
δ

 ∑
ω

  ex
γ(i) ex

δ(j)*ex
ω(k)*e x

δ+ω−γ(l)  (15)

where R x
αε(−1) and R x

αε(1) are noted R x
αε and C x

αε respectively.
The matrix Qxa, whose coefficient are given by (15), can
also be written as

Qxa = (A⊗A*) Q mca (A⊗A*)H                    (16)

where Qmca is the apparent quadricovariance of mc(t),
defined by (15) with the indice mc replacing x. In a similar
way, the apparent quadricovariance of the whitened
observation vector z(t) has also the form depicted by (16)

but where the mca indice is replaced by the mca’ one. The
previous result shows that Qxa(i, j, k, l) = Qx(i, j, k, l) if
Qmca(i, j, k, l) = Qmc(i, j, k, l), which obviously occurs in
particular for zero-mean stationary sources. In a same way,
Qxa(i, j, k, l) ≠ Qx(i, j, k, l) if Qmca(i, j, k, l) ≠ Qmc(i, j, k, l),
which obviously occurs when the sources have some non
zero cyclic frequencies, i.e when the sources are
cyclostationary. In this latter case, some FO cross-
cumulants of the Qmca matrix, i.e some Qmca(i, j, k, l) terms
with (i, j, k, l) ≠ (i, i, i, i), may be non zero and may create
an apparent FO correlation of some sources in the Qxa

matrix, which may also affect the behavior of the JADE
method. We verify from (15) with mc instead of x that this
situation occurs when at least two sources are such that the
intersection between their sets of first, third and non-zero
SO cyclic frequencies is not empty. For zero-mean sources,
this condition means that the two considered sources have to
share some non zero SO cyclic frequencies, results already
found in [4]. However for non zero mean sources such as
the CPFSK sources with an integer modulation indice [5],
the previous condition is obtain in particular when the two
sources share at least one first order cyclic frequency. These
results are illustrated in section 5.

4.3. Adaptation : new estimators introduction

4.3.1. SO statistics

Since the averaged correlation matrice Rmc may be non
diagonal in the presence of first order cyclostationary
sources, we have to exploit the information contained in the
averaged covariance matrice R∆mc which is always diagonal
for statistically independent sources, zero-mean or not. In
other words, we have to implement the whitening step of
indirect HO BSS methods from the averaged covariance
matrix R∆x =∆ <R∆x(t,−1)>c defined from (10) for ε = −1,
where Ex =

∆ <Ex(t,−1)>c is given by

        Ex =
∆ <ex(t) ex(t)

H>c  = ∑
Γ∈γ

γγ H
xx ee                      (17)

where Γ is the set of the first order cyclic frequencies of
x(t). So, for first order and SO cyclostationary and band-
limited vectors x(t) having a SO cyclo-ergodicity property
and for sufficiently oversampled data, after a preliminary
step of first order cyclic frequencies estimation, we define
an asymptotic unbiased and consistent estimator R̂∆x(L) of
the averaged covariance matrix R∆x by [5]

( )Lx∆R̂ =∆ ( ) ( ) ( )∑
=

γγ−
L

l

Hl
x

l
xx L

1

ˆˆˆ eeR     (18)

where R̂∆x(L) is defined in 3.3 and

    γ
xê =∆ ( )∑

=

−
L

l

lTj eel
L 1

21 γπx      (19)

4.3.2. FO statistics

The exploitation of the information contained in the true
data quadricovariance matrix in the presence of first order
cyclostationary sources requires to take into account the



cyclic statistics of the data up to the third order as it is
shown by (15). In this context, after a preliminary step of
data’s first and SO cyclic frequencies estimation, we have
to compute an estimate of Qx(i, j, k, l) from (15), replacing
Qxa(i, j, k, l) by its empirical estimation presented in 3.3 and
the true data cyclic statistics up to the third order, ex

γ(i),
Rx

α(i, j), Cx
β(i, j) and Tx

ν(i, j, k) by their estimates given
respectively by   

   êx
γ(i) =  

1__

L
   ∑

L

l=1

  xi(l) e
−j2πγlTe       (20)

   R̂x
α(i, j) =  

1__

L
   ∑

L

l=1

  xi(l) xj(l)
*
 e

−j2παlTe       (21)

   Ĉx
β(i, j) =  

1__

L
   ∑

L

l=1

  xi(l) xj(l) e
−j2πβlTe       (22)

   T̂x
ν(i, j, k) =  

1__

L
   ∑

L

l=1

  xi(l) xj(l)
*
 xk(l)

*
  e

−j2πνlTe       (23)

Thus, under the assumption of non zero-mean
cyclostationary, cyclo-ergodic and band-limited vectors
x(t), provided the data are sufficiently oversampled, we
obtain an unbiased and consistent estimate of Qx(i, j, k, l).

3 SIMULATIONS

To illustrate the previous results, we assume that two
statistically independent NB and orthogonal (AHA = N I) 2-
CPFSK sources are received by an array of N =5 sensors.
These two sources have the same input SNR (Signal Noise
Ratio) of 10 dB and are synchronized. Their symbol
durations and their modulation indices are such that
h1/T1=h2/T2=(4Te)–1 for h1=2 and h2=4. We apply the JADE
method and the SINRMk (Maximal Signal to Interference
plus Noise Ratio of the source k), used in [4], at the output
of the JADE separator for k=1,2 are computed and averaged
over 200 realizations.

Under the previous assumptions, the figure 1 shows the
variations of the SINRM1 of the first source at the output of
the JADE separator as a function of the number of
snapshots, when the JADE method is implemented from
four couples of statistics estimators : (EMP_SO, EMP_FO),
(EMP_SO, NEW_FO), (NEW_SO, EMP_FO) and
(NEW_SO, NEW_FO), where EMP and NEW corresponds
to the Empirical and the New statistics estimators. Taking
zero carrier frequencies, ∆f1=∆f2=0, the first and SO cyclic
frequencies of the observations belong to {0, −h1/2T1,
h1/2T1} and are such that the two sources become
apparently SO and FO correlated. As planned, the figure 1
shows the poor separation of the sources when the JADE
method uses at least one of the two empirical estimators. On
the contrary, the use of the NEW SO and FO statistics
estimators allows the optimal separation of the two 2-
CPFSK sources.

4 CONCLUSION

In this paper, we showed that the current HO BSS
methods, such as the JADE method, may be affected by the
presence of statistically independent NB sources which are
both non zero-mean and cyclostationary, such as some
CPFSK sources. This problem is directly related to the fact
that, in the previous context, the current HO BSS methods
aim at exploiting the information contained in biased
estimation of the SO and FO cumulant matrix of the data,
both generated by the SO and FO empirical statistics
estimators respectively.

To solve this problem, the HO BSS methods have to
exploit the information contained in the temporal mean of
both the true SO and FO cumulant matrices of the data. For
this purpose, we introduced in the paper unbiased and
consistent estimators of the two previous matrices for non
zero-mean cyclostationary observations, assuming that the
first and second order cyclic frequencies of the latter have
been estimated previously. These estimators require the
estimation of the cyclic statistics of the observations up to
the third order.
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Fig.1 -  SINRM1 as a function of L, (a) (EMP_SO, EMP_FO),
(b) (NEW_SO, NEW_FO), (c) (NEW_SO, EMP_FO), (d)

(EMP_SO, NEW_FO)
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