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ABSTRACT

In OFDM systems, receiving techniques are mainly
sensitive to the employed channel estimation strategy.
Channel modelling is a crucial point in deriving a chan-
nel estimation method. We address here a simple chan-
nel model taking into account physical characteristics of
the channel. We also show that this simple model can
lead to good performance in symbol-by-symbol recep-
tion schemes.

1 Introduction

In recent years, many studies have been lead on OFDM
receiving techniques and specially about channel esti-
mation methods [3, 1, 4, 5]. Modelling the channel is a
decisive step in channel estimation, and the complexity
of the model confers the complexity of the estimation
technique. Hence it is very important to have simple
models. Simple models usually don’t take into account
the physical parameters of the channel.

In this paper, we define a new channel model from the
channel model defined in [3], based on an auto-regressive
(AR) representation, and taking into account the phys-
ical parameters of the channel.

We will show that from this new model, it is possible to
obtain good performance with symbol by symbol pro-
cessing receivers.

2 OFDM Signal model
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Figure 1: Baseband OFDM system
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We consider the base-band OFDM system shown in
Figure 1. The subcarriers modulation is performed via
an inverse discrete Fourier transform (IDFT). The time-
varying impulse response, ¢(7;t), of the channel seen by
the receiver is described by

I-1

e(rit) = Z a; (t)0(r — 7:(t)), (1)

=0

where «;(t) and 7;(t) are respectively the complex-
valued attenuation and delay of the i*" path, I is the
number of paths and §(.) is the Dirac function. Let n(t)
represent the complex additive white Gaussian noise
corrupting the reception. The demodulation is done
by a discrete Fourier transform (DFT) at each diver-
sity branch of the receiver.

The OFDM signal can be represented by a data block
[2]. Each block is with dimension M x N, M being the
OFDM symbols numbers and N the sub-carrier num-
ber in the time-frequency block, and is composed by
M x N symbols {a,,}, belonging to a constellation 2
with two-dimensional position (mF,nT) where F' and
T are respectively the frequency and time spacing be-
tween two adjacent symbols. The symbols a,,, (m being
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Figure 2: Time-frequency block structure

the frequency index and n the time index in the time-
frequency block) are transmitted. After removal of the
cyclic prefix, the received signal is first demodulated by
a N-point FFT algorithm [6]. Considering perfect time



and frequency synchronization at the receiver, we get
the signal R,,, at the output of the FFT-demodulator
associated to the symbol a,,, :

Ron = CmnGmn + Nin (2)

where ¢, is the discrete channel gain factor associated
to the symbol a,,, and N,,, is an complex additive
gaussian white noise with variance Ny. The channel
gain factors are correlated in time and frequency.

3 Channel model and rank-reduction strategy

In this paper, we assume the channel to be a multi-
path doppler fading channel. The multipath channel
is a propagation environment in which the signal is re-
ceived at the receiver from multiple paths generated by
multiple reflection and spreading effects. These effects
may lead to fast phase and amplitude variations. Each
path is characterized by its mean power, its propagation
delay and its Doppler power spectrum depending on the
environment, the mobile speed and the carrier on which
the signal is transmitted. In general, the propagation
channel is represented as :

g(rst) =Y ag(t)e M mDs(r —7,()  (3)

where ag4(t) is the time-varying attenuation factor, f.
the carrier frequency and 7,(t) the ¢'" path delay. The
propagation channel is assumed non-varying on one car-
rier during a symbol period. On a given carrier f,, and
for the n'* received OFDM symbol, the channel gain
factor becomes:

Cmn = Z aqeij%TfmTq&(T - Tq)~ (4)

q

3.1 A physical model for delay-Doppler Spread
channels

In [3], a physical model is used to characterize the corre-
lation between the time and frequency gains factors ¢,
in (2). This model is using the statistics of the channel
and uses a block representation of the channel based
on its covariance matrix. For a classical Doppler power
spectrum and exponential multipath intensity, the cor-
relation between two symbols spaced in time and fre-
quency respectively with At and Af is given by:

P(Af, At) = 6(0)p(At)d s (AS), (5)
with ¢(0) > 0,
di(At) = Jo(mBaAb), (6)

and
1

dr(Af) = TS 2, Af (7)

Here Jj is the zero-order Bessel function of the first kind,
with By and T, being the Doppler and delay spreads

respectively of the propagation channel.
Let C be the vector corresponding to all the gain factors
observed of a time-frequency block,

C = (CO,Oa .. '7CO,N717 o 7CM71,07 o 7CM71,N71)T (8)

()T being the transpose operator. The (p,q)!" element
of the NM x NM hermitian covariance matrix ¢ =
IE[CCT] of the channel corresponding to the correlation
between ¢y, n, and ¢y p, :

Py g = d((mp —mg)F, (ny —ng)T). 9)

8.1.1 Bi-dimensional form
In [3], a model is derived for the covariance matrix of the
channel using the Karhunen-Loéve expansion theorem.
The channel is represented by:

NM-1

C= Y GVi (10)
k=0

where {V;}¥~1 are the normalized eigenvectors of
the hermitian covariance matrix ® of the equivalent
channel vector C and the {Gj}r 2~ are zero-mean
independent complex Gaussian random variables. The
variances of these random variables are equal to the

eigenvalues {I'x }2 4" of the hermitian matrix ®.

8.1.2 Two-1D form

In matrix form, we can define the M x M real symmetric
Toeplitz matrix R by:

[R], o = Jo(mBalt — s1), (11)

and the N x N complex hermitian Toeplitz matrix S by:

1
S = 1+ j52nT,,(k—1)°

(12)

Hence,

E [CNt+k C7vs+l] = [R]t,s [S]w- (13)
We can the see that the NM x NM matrix ® can be
redefined by (13), which consists in the tensor product
® = R®S. Thus, in particular, the eigenvalues of &
consists precisely of the set of all the products of the
eigenvalues of R and S. In addition , the eigenvectors of
® can be written in terms of the eigenvectors of R and
S. Thus to perform an eigen-decomposition of ®, only
the eigen-decompositions of R and S are needed. More
specifically, if

M—-1
R = )\k Uk ug (14)
k=0
N-1
S = [k U VR (15)
k=0
then
M—-1N-1
b= At (ug @ vp) (ug ® vl)T (16)
k=0 [=0



3.1.8  Rank reduction strategy

As observed in [3], since the {G}}F=~! are gaussian
variables with variance equal to the {T'x };=0""", the G}
with a very small associated eigenvalue is insignificant.
Thus, for a given channel, we can define a small number
of eigenvectors representing the channel, see figure 3.
This fact represented here in the case defined in 3.1.1
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Figure 3: Cumulated eigenvalues

but is also valuable for the tensor-based representation
defined above in 3.1.2.

Using this channel model may lead to quite complex
computation since size of time-frequency blocks may be
important. The main idea in this paper is to use a more
simple type of channel model, but also taking into ac-
count physical characteristics of the channel.

3.2 Time-correlated Rayleigh flat fading chan-
nel model

3.2.1 Model description

In this section, the channel gains are modelled as a first-
order vector Gauss-Markov process expressed in com-
plex form by

Cny1 = A cp +vp 17)

where A € CV*¥ is a known, stable matrix repre-
senting the state transition matrix of the Gauss-Markov
process, ¢, is the vector containing the gain factors ob-
served on the n'» OFDM symbol and v, is a complex
Gaussian white noise process with mean p and covari-
ance (). We assume that at the initial time n = 0 that ¢
is chosen to be Gaussian with the steady state statistics

Eeoy =T —-A) " p, (18)

and Cov{cp} = P where P satisfies the Lyapunov
equation APA” 4+ @ = P. Thus ¢, will be a stationary
process with mean given by (18) and with autocorrela-
tion matrix

Al P 1>0
E{cn ¢l )} = . - 1
{en i} {P (AN 1<o. (19)

3.2.2  Taking into account physical parameters

From (19) and (5), we can see that the P matrix rep-
resents by itself the frequency correlation and A’ is the
time correlation between two symbols separated by a
time shift equal to [. Thus immediately,

_ $(0)
T 14 2T (k- D)F

P (20)
Due to a separable nature of the physical channel corre-
lation function (5), we take our state transition matrix
A to be of the form A = a I, where a is constant
complex. Comparing the time correlation between two
OFDM symbols separated by I symbol periods, we need
to have a' = Jo(mwB4lT) for every [. This is theoretically
impossible, so an approximation has to be made for the
{a}M5! to fit the {Jo(7BalT)} 5", M denoting the
number of OFDM symbols corresponding to the time
duration after which the correlation is considered to be
insignificant. This approximation is given by solving the
minimum mean-square error following problem:

M-1
min Y [Jo(wBalT) — a'|* . (21)
=0

4 Simulation results

In this paper, we don’t aim at defining the most accu-
rate representation of the channel. We define a simple
AR-based model taking into account the frequency and
time selectivity physical parameters of the channel. We
are mainly interested in symbol by symbol processing
in a recursive fashion, including past-states forgetting .
This is leading to online channel estimate computation,
which is a very important point for broadcasting sys-
tems.

To show that with this kind of simple channel model,
it is possible to get receivers with good performance,
we made some simulation. We considered a single user
OFDM system with 16 carriers. The modulation scheme
employed is BPSK.

The data sequence is arranged into a block of 16 OFDM
symbols. Each symbol is transmitted over the 16 orthog-
onal frequency channels using the DFT. We assumed
that the fading channels are independent from block to
block. However, within each block, the time-frequency
covariance of the fading channels between any two sym-
bols is given by the model in section 3.1. In this sim-
ulation, we used By7T = 0.25 and T, F = 0.5. Fig. 4
shows the time-frequency correlation of the fading chan-
nels. With these values of ByT and T,,F, the fading
channels are highly decorrelated in the frequency coor-
dinate. Fig. 4.a shows the time correlation of the fading
channels modelled by the zero*"-order Bessel function of
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Figure 4: Time and frequency correlation of the channel

the first kind and its approximation as detailed above.
For BT = 0.25, the channels are reasonably decorre-
lated in the temporal dimension. The correlation of the
fading coefficients between any two consecutive symbols
is 0.852 and the first zero of the Bessel function is at
the third symbol. In this simulation we evaluated the
performance of two Kalman-based receiving techniques.
The first Kalman-based method is an a posteriori prob-
ability technique (APP) and the second one uses the
EM algorithm for an iterative estimation of the chan-
nel. In addition, as a benchmark, we evaluated the per-
formance of the coherent Maximum Likelihood receiver
which has the full knowledge of the fading coefficients
at every symbol interval. Both APP and EM techniques
perform symbol by symbol detection. Simulation results
are given in figure 5. This figure shows that using the
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Figure 5: Receivers’ performance for B;7T = 0.25 and
TF =05

AR-based channel model defined in 3.2 with classical
channel estimation methods gives good performance.

5 Conclusion

In this paper, we presented a simple AR-based chan-
nel model for OFDM systems taking into account phys-
ical characteristics of the channel, such as time and
frequency correlation between adjacent OFDM symbols
and subcarriers.

‘We have shown that even if this model is obtained from
a rough approximation of the time-correlation behavior,
it is possible to get simple symbol by symbol receivers
with good performance.

Next, further studies will lead to the identification of
appropriate receiving techniques for this new channel
model.
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