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ABSTRACT

In this paper, a new method for the estimation of the
direction-of-arrival (DOA) and relative propagation de-
lay in the context of multipath rays is described. The
proposed algorithm processes the received signals at a
uniform circular array and uses ESPRIT-like approach
for the estimation of the relevant parameters. We show,
in particular that in the context of circular arrays, this
algorithm increases drastically the accuracy of the esti-
mated parameters with only a small number of sensors
and limited processing complexity. These results en-
courage the use of such configurations in future wireless
networks.

1 INTRODUCTION

In wireless communications, such as radar and sonar,
emitted signals are received via multiple rays. Accurate
estimation of the directions of arrival and propagation
delays are therefore extremely important in order to re-
trieve the location of the transmitter. In particular, in
mobile communications, the use of multiple antennas
has been acknowledged to be an effective way to en-
hance the accuracy of the mobile location [1]. However,
the geometrical configuration as well as the number of
such antennas is still an open topic. Hence, in [2], a
joint estimation algorithm of angles and delays param-
eters within the framework of linear antenna arrays is
proposed. The latter is based on a two-dimensional (2-
D) ESPRIT (Estimation of Signal Parameters via Rota-
tional Invariance Techniques) like shift-invariance tech-
nique. In this paper, we generalize this work in the con-
text of uniform circular array receiver. Indeed, previous
studies [3] have pointed out the considerable enhance-
ments provided by the use of circular arrays with respect
to linear ones. In particular, we extend and improve the
array transform technique used in [4] for 2-D angle (el-
evation and azimuth) estimation. The extended trans-
form allows us to use antenna arrays with a relatively
small number of sensors (contrary to [4] where a large
amount of antenna arrays is needed) for recovering with
precise accuracy the location parameters. The system
and channel model are described in section 2 followed
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by a presentation of the algorithm in section 3. Section
4 is devoted to simulation results which illustrate our
claims.

2 CHANNEL MODEL

In the following, upper (lower) boldface symbols will be
used for matrices (column vectors) whereas lower sym-
bols will represent scalar values, (.)7 will denote trans-
pose operator, (.)* conjugation, (.)¥ = (()7)” hermi-
tian transpose and # the Moore-Penrose pseudo inverse
operator.

Consider a single source observed by a uniform cir-
cular array of N sensors. The digital sequence s; is
transmitted over a multipath channel. The received sig-
nal by the k-th sensor, in presence of additive noise, is
expressed as:

oe(t) = D sihi(t —IT) +w(t), 1<kE<N (1)
l€eZ

where T is the symbol duration, w(t) is an additive white
Gaussian noise process and h(t) is the impulse response
of the channel.

For the array of N sensors, the (N x 1) impulse response
model vector is given by [2]:

hi(t) d
h(t) = : = a(0:)Big(t — 7) (2)
hN(t) =1

where d is the number of distinct propagation paths,
g(t) is the known modulation pulse shape (square-root
raised cosine). Each path is characterized by its delay
T4, its complex attenuation 3; and its direction of arrival
0;.

a(f;) is the steering vector of the array expressing its
complex response to a planar wavefront arriving from
direction #;. The antenna considered here, is composed
of sensors, assumed to be identical and omnidirectional,
uniformly distributed over the circumference of a circle
of radius r. The angle between sensor 7 and sensor 1 is
noted y; = w Let the array center be the phase



reference point. The array response vector a(f;) is then
given by:

ejEcos(Gi —71)

a(0;) =

elécos(0i—yn)

where ¢ = and A is the wavelength. Denote H
the matrix containing the impulse response samples col-
lected at each sensor. We denote by L the channel length
and P the oversampling factor. The (N x LP) dimen-
sional matrix H can be written as [2]:

[ h(0) h(%)

27T
A

H = h(LT - T) ]

ﬂl 0 87,

k!

= J[a(61)...a(8y)] . :
0 6d gTd

= A(0)BG(r)
where g, is a LP—dimensional row vector containing
the samples of g(t — 7;)

gr. = [g(-m) g(L—m) g(LT - % —7) |

We assume here that the channel matrix H has been
estimated using either a training sequence or an existing
blind identification method [5]. Our objective in this
paper is propose a simple yet robust algorithm to extract
the information of angle and delay parameters from the
channel transfer function.

3 PROPOSED ALGORITHM

We introduce here our angle and delay estimation algo-
rithm that proceeds in two steps:

o First, as in [2], a Fourier transform of the channel
matrix H is performed and propagation delays are
estimated using a standard ESPRIT algorithm.

e In the second step, we focus on the phase mode
excitations of the circular array. The new procedure
estimates the direction of arrival of the multipath
rays with a relatively small number of sensors (in
comparison with what is required in [4]).

3.1 Delay estimation

Asin [2], a Fourier transform is used in order to estimate
the delays since it converts them to a certain phase pro-
gression. Given the channel model in (2), the Fourier

coefficient hp(f) = TF(h(t)) can be written as:

d

hr(f) =) a(6:)Bigr(f)e 7>

i=1

where gr(f) is the Fourier transform of g(¢). In matrix
form, this yields to

Hr = A(9)BV(7)diag(gr)

Where Hp is the Fourier transform channel matrix,
i.e., Hr = HF with F is the (LP x LP) Fourier trans-
form matrix [2]. gp represents the vector of Fourier
transform coefficients of the pulse shape filter g(¢) and
V(7) is the Vandermonde matrix given by:

1 X1 X12 - XlLP_l

V(i) =1|: :
1 xa xda® ... xa*!

where x; = P ,1<i<d.

The structure of the matrix Hy has the shift-invariance

properties which allows the estimation of 7; by the ES-

PRIT algorithm. More precisely, delays parameters are

estimated according to the following steps:

e Construct the following matrix:
Hy
= ABF

where Hp = Hpdiag(gr) !, I:I%i) is the left
shifted submatrix of Hr containing columns 4,7 +
1,...,LP+i—2 of Hp, F is the submatrix of F(7)

containing columns 1,2,...,LP — 1 and :
A(0) ]
A=
[ A(0)o(T)
with ¢(7) = diag(e = ) - ..,e_jQL”d

e Compute U = [uy,...,uq] the d principal left sin-
gular eigenvectors of H.

¢ Estimate ¢(7) as the diagonal matrix of the eigen-
values of UfEUz where:

ve o | IV

e Estimate the delays 7; as 73, = %le(d’“) where

¢y is the iy, diagonal entry of ¢(7) and angle(x)
represents the phase of x.

3.2 DOA estimation

Once the estimation of the delays is carried out, it is
possible to limit the study to matrix H; obtained by
right multiplying Hr by V(7)#.

H1 = ﬂFV(T)#
A(0)B 3)
Let us consider the excitation function w,, () = /™,

v € [0, 27] which represents the my, spatial harmonic. It
excites a continuous circular aperture with phase mode



m.Therefore, left multiplying H; by the following nor-
malized row vector

W, = l [ ejm'Yl ejm'YZ ejm’YN ] (4)
is equivalent to excite the array sensors with the myy,
phase mode. In [4], the expression of the resulting array
excitation is derived:

N
w 1 o
ma(H,-) = _N E edmIn ejgcos(ai—’h)

n=1

= T In (€ 4+ 3 (5 Ty (€)e "
k=1

+ I ()e?M) (5)

Where g = Nk —m, h = Nk + m and J,,(&) repre-
sents the Bessel function of order m. It is possible to
keep only the first term in (5) and to discard the other
terms appearing in the sum by choosing a sufficiently
large number of sensors. Indeed, the table below shows
that the values of the Bessel function J,, (&), with r the
radius of the circular array has been taken equal to 2

27
decrease very quickly.

m 0 1 2 3 4
JIm(m) || -0.3 | 0.28 | 0.49 0.33 0.15
m ) 6 7 8 9
Jm(7) || 0.05 | 0.01 | 0.003 | 0.0007 | 0.0001

One can see that for modes m higher than M = 6, the
terms j™J,,(€)e?™? can be neglected in (5). M is the
maximum excitation mode considered. The condition
to have the first term to be the predominant one in (5)
is:

oM < N

This condition might be quite constraining in some ap-
plications. To relax it, we propose to take into account
the two first terms appearing in the sum in (5):
— For m > 0, E,,,(0;) is approximately given by:

Epn(0;) = §™ I (£)e?™% + J'NimJN_m(@e’j(N*m)ai (6)
— For m < 0, we have similarly:
Em(ei) ~ jme(é')eiji +jN+mJN+m(§)ej(N+m)9i (7)

Therefore, only terms J,(§) where p > N are ne-
glected, and the condition on the number of sensors be-
comes:

M<N

Moreover, by using the following property J_.,,(§) =
(=1)™Jn(£), it is possible to obtain a matrix where only
the first predominant term of (5) appears. Indeed, by

taking an odd number of sensors N, the following result
is obtained:

By (0:) + EX5,(0:) =
Espi1(0:) — Ei(2p+1) 0:;) =

In matrix form, this can be written as:

257 Top (€)%

2j2p+1 J2p+1 (f) el (2p+1)0;

AB) =J1A0) +JA(H)" (8)
where J; and J5 are known matrices defined by:
wo (—1)%wp*
J1 = , Ja = :
War (-D)Mw_p*

According to (6) and (7), A(6) has the following struc-
ture:

A(6) = D[a(6y),..,a(0a)]
with D = diag(2Jo(£), . .., 2jM Jy (€))
and

a@)=[1 e eiMoi 1T

To apply the matrix transform in (8), we need to ac-
cess directly to matrix A () (or, because of the complex
conjugate operation to A (6) times a real-valued matrix).
Up to now, we only have the estimate of H; = A(6)B
where the complex attenuation matrix B appears. To
get rid of the phases of the complex attenuations (3;)
(diagonal entries of B), we use the fact that for mode
m = 0. Ey(8) = Jo(&) is real valued. Therefore, matrix
H, is transformed according to:

AN

H, 2 JHP+J,(HP)
= DA@®B
where P = sign(Jo (€))diag(e—/Phase(woH1)) with
. _J1 ifx>0
sign(x) =1 _1 ifx<0
and B = diag(|51],..-,|84l)-
Let us define Hj as:
H; = D 'H,
A(H)B.

The DOA are finally estimated according to:
6; = angle(h)"h{))

where hs; denotes the i;, column vector of Hg, h&)

(resp. hg ) is the sub-vector of hs ; where its last entry
(resp. its first entry) is removed. Note that, this estima-
tion method provides an automatic pairing of the angle
and delay parameters, i.e. the 4y, column of Hj (i
angle) is associated with the i, row of the estimated
matrix V(7) (i, delay). In fact, if the rows of V(1) are
permuted, then the columns of Hs are permuted in the
same way according to equation (3).



4 SIMULATION RESULTS

In this section, we provide some simulation results to
illustrate the performance of our estimation algorithm
and assess the robustness of the method to channel es-
timation errors. A uniform circular array consisting of
N = 7 sensors, with a circumferential spacing between
two adjacent sensors of 0.45)\ (the array radius r is equal
to %), is considered. N has been chosen specifically such
as Jy(m) is negligible compared to the 0th mode. We
assume that a single source is present and each sensor
receives the contribution of two rays characterized by
their angle of arrival [-10, 20] degrees, their delays [0,
1/6] T and their constant fading coeflicient [1, 0.8] with
a randomly phase. The estimation error on the channel
coefficients is modeled by a Gaussian additive noise of
variance 02 on each sample. The SNR is defined as:

E(Trace(HHY))
o?(NLP)
N, = 100 independent Monte-Carlo runs have been per-

formed. The performance is measured by the estimation
of the Mean Square Error (MSE) defined by

SNR =

1 &
MSE = — " ||z — z®
NT r=1

where Z, denotes the estimated parameter. In our case,
z is either the DOA parameter 0;, i = 1,2 or the delay
parameter 7;, ¢ = 1,2. In figure 1, the normalized MSE
of the estimated angles (i.e. the MSE divided by the
square norm of the considered parameters) is plotted
versus the SNR in dB. In figure 2, we plot the MSE of
the estimated delays versus the SNR in dB (The symbol
period T is normalized to one). We can observe on this
example, the good performance of the proposed method
of estimation for moderate and high SNR’s with only 7
sensors. Further simulation examples and detailed per-
formance analysis will be provided in future work.
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