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ABSTRACT

Boolean regression models are useful tools for various
applications in nonlinear filtering, nonlinear prediction,
classification and clustering. We discuss here the so-
called normalized maximum likelihood (NML) models
for these classes of models. Examples of discrimination
of cancer types by using the universal NML model for
the Boolean regression models indicate its ability to se-
lect sets of feature genes discriminating at error rates
significantly smaller than those of other discrimination
methods.

1 Introduction

We discuss here the NML models for Boolean classes of
models. The NML model for the linear regression prob-
lem was introduced and analyzed recently, [7]. We re-
state the classification problem as a modelling problem
in terms of a class of parametric models for which the
maximum likelihood parameter estimates can be easily
computed. We review first the NML model for Bernoulli
strings as the solution of a minmax optimization prob-
lem. We then introduce a model class for the case when
the binary strings to be modelled are observed jointly
with several other binary strings (regression variables).
We derive the NML model for this model class, provide
a fast evaluation procedures and apply it to a classifica-
tion problem.

The concept of gene expression was introduced four
decades ago with the discovery of messenger RNA, when
the theory of genetic regulation of protein synthesis was
described [5]. The availability of cDNA microarrays
makes it possible to measure simultaneously the expres-
sions level for thousands of genes. Gene expression data
obtained in microarray experiments may often be dis-
cretized as binary or ternary data, the values 1,0,-1 car-
rying the meanings of overexpressed, normal, and re-
pressed, respectively, which are the needed descriptors
when defining regulatory pathways [4].

One possible setting of a classification problem is in
terms of a Boolean regression problem. Suppose that the
data available is a matrix X, where the entry x(i, j) ∈
{0, 1} is a binary (quantized) gene expression, the row

index i ∈ {1, . . . , N} identifies the gene, and the column
index j ∈ {1, . . . , n} identifies the ”patient”. We denote
by xj the jth column of the matrix X. Furthermore,
a class label yj is known for all patients (e.g. yj = 0
or yj = 1 for the j’th patient having disease type A,
or type B, respectively). Our goal is to build Boolean
models ŷj = f(xi1,j , . . . , xik,j) and to select the set of
informative genes, {i1, i2, . . . , ik}.
2 The NML model for Bernoulli strings

In this section we assume that a Bernoulli variable Y
with P (Y = 0) = θ is observed repeatedly n times,
generating the string yn = y1, . . . yn. We look for a dis-
tribution q(yn) over all strings of length n, such that the
ideal codelength log 1

q(yn) assigned to a particular string
yn by this distribution, is as close as possible to the ideal
codelength log 1

P (yn|θ̂(yn))
obtainable with the Bernoulli

models. In the coding scenario, the decoder is allowed
to use a predefined distribution, q(·), but he cannot use
the distribution P (·|θ̂(yn)) because he does not have yn

available. The latter will be the most advantageous dis-
tribution in the family P (yn|θ) for the string yn, since
it maximizes P (yn|θ̂(yn)), and therefore minimizes the
ideal codelength log 1

P (yn|θ̂(yn))
. The distribution q(yn)

is selected such that the ”regret” of using q(yn) instead
of P (yn|θ̂(yn)), namely,

log
1

q(yn)
− log

1

P (yn|θ̂(yn))
= log

P (yn|θ̂(yn))
q(yn)

, (1)

is minimized for the worst case yn; i.e.

min
q

max
yn

log
P (yn|θ̂(yn))

q(yn)
(2)

Theorem 1 (Shtarkov[9]) The minimizing distribution
is given by

q(yn) =
P (yn|θ̂(yn))

Cn
, (3)

where

Cn =
n∑

m=0

(
n
m

) (m

n

)m (
1− m

n

)n−m

. (4)
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A strong optimality property of the NML models was
recently proven in [8], where the following minmax prob-
lem was formulated: find the (universal) distribution
which minimizes the average regret

min
q

max
g

Eg log
P (Y n|θ̂(Y n))

q(Y n)
, (5)

where g(·), the generating distribution of the data, and
q(·) run through any sets that include the NML model.

Theorem 2 ([8]) The minimizing distribution q(·) in
the minmax problem (5) is given by (3) and (4).

3 The NML model for a Boolean class

We consider a binary random variable Y , which is ob-
served jointly with a binary regressor vector X ∈ Bk. In
a useful model class, a carefully selected Boolean func-
tion f : Bk → {0, 1} should provide a reasonable pre-
diction f(X) of Y , in the sense that the absolute error
E = |Y − f(X)| has a high probability of being 0. Since
E , Y, f(X) are binary-valued we have E = |Y − f(X)| =
Y ⊕ f(X), which also implies Y = f(X) ⊕ E , where ⊕
is modulo 2 sum.

We therefore consider a corruption model defined as
follows:

Y = f(X)⊕ E =





f(X) if E = 0

f(X) if E = 1
(6)

where f(·) is a Boolean function and the error E is inde-
pendently drawn from a Bernoulli source with parame-
ter θ; i.e., P (E = 1) = 1 − θ and P (E = 0) = θ, or for
short

P (E = b) = θ1−b(1− θ)b, for b ∈ {0, 1} (7)

Denote by bi ∈ {0, 1}k the vector having as entries the
bits in the binary representation of integer i, i.e., b0 =
[0, . . . , 0, 0], b1 = [0, . . . , 0, 1], etc. Further, define by (6)
and (7) the conditional probability for code bi ∈ {0, 1}k,

P (Y = y|X = bi) = θ1−y⊕f(bi)(1− θ)y⊕f(bi). (8)

The Boolean regression problem will be stated as find-
ing the optimal universal model (in a minmax sense to
be specified shortly) for the following class of models:

M(θ, k, f) =
= {P (y|f, bi, θ) = θ(1−y⊕f(bi))(1− θ)(y⊕f(bi))} (9)

where y ∈ {0, 1}, θ ∈ [0, 1], bi ∈ {0, 1}k.
When the sequence yn = y1 . . . yn and the sequence of

binary regressor vectors bn = bi1 , . . . , bin
are observed, a

member of the class M(θ, k, f) assigns to the sequence
yn the following probability

P (yn|θ, k, f, bn) =
n∏

j=1

θ
(1−yj⊕f(bij

))
(1− θ)

(yj⊕f(b
ij

))

= θn0(1− θ)n−n0 , (10)

where n0 is the number of zeros in the sequence {εj =
yj ⊕ f(bij

)}n
j=1. The ML estimate of the model param-

eters,

(θ̂(yn), f̂yn) = arg max
θ,f

P (yn|θ, k, f, bn), (11)

can be obtained in two stages, first by maximizing with
respect to f ,

max
f

P (yn|θ, k, f, bn), (12)

and observing that the optimal f(·) does not depend on
θ. For a fixed θ > 0.5, the function P (yn|θ, k, f, bn) =
θn0(1 − θ)n−n0 decreases monotonically with n0, and
(12) is maximized by maximizing n0, or, equivalently,
by minimizing n− n0

min
f

(n− n0) = min
f

n∑

j=1

|yj − f(bij
)|

= min
f

2n∑

`=0

m`0f(b`) + m`1(1− f(b`)). (13)

Equation (13) shows that f should be optimal for the
mean absolute error (MAE) criterion. It can also be seen
that the assignment of f(b`) depends solely on m`0 ,m`1 ,
and the solution is

f̂yn(b`) =
{

0 if m`0 ≥ m`1

1 if m`0 < m`1
, (14)

which can be readily computed from the data set. De-
note by n∗0(y

n) the number of zeros in the sequence
{εj = yj ⊕ f̂yn(bij

)}n
j=1. To completely solve the ML

estimation problem we have to find

max
θ

P (yn|θ, k, f̂yn , bn), (15)

for which the maximizing parameter is θ̂(yn) = n∗0(yn)
n .

Therefore

P (yn|θ̂(yn), k, f̂yn , bn)

=
(

n∗0(y
n)

n

)n∗0(yn) (
1− n∗0(y

n)
n

)n−n∗0(yn)

. (16)

We need to define a distribution q(yn) over all possible
sequences yn, which is the best in the minmax sense

min
q

max
yn

P (yn|θ̂(yn), k, f̂yn , bn)
q(yn)

, (17)

which is clearly given by the NML model,

q(yn) =
P (yn|θ̂(yn), k, f̂yn , bn)

Cn(k, bn)
, (18)

where

Cn(k, bn) =

=
∑
yn

(
n∗0(y

n)
n

)n∗0(yn) (
1− n∗0(y

n)
n

)n−n∗0(yn)

(19)
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We remark that n∗0 depends on yn through f̂yn in a
complicated manner. When k = 0, the normalization
factor is Cn(0, bn) = Cn, given in (4).

Alternative expressions for the coefficient Cn(k, bn)
provide faster evaluation. We need to specify the dis-
tinct elements in the set {b`|b` ∈ bn} as {bj1

, . . . , bjK
},

and denote by zq the subsequence of yn observed when
the regressor vector is bjq

. Let nq be the length of the
subsequence zq having mq zeros.

We observe that (19) can be alternatively expressed
as

Cn(k, bn) =
n∑

n∗1=0

(
n∗1
n

)n∗1 (
1− n∗1

n

)n−n∗1
SK,n1,...,nK

(n∗1),

where SK,n1,...,nK
(n∗1) is the number of sequences yn

having n∗1 =
∑K

q=1 min(mq, nq −mq) ones in the resid-
ual sequence. The numbers SK,n1,...,nK

(n∗0) can be easily
computed, recursively in K. Denote first

h`(m) =





0 if m > n`

2(
n`

m

)
if m = n`

2

2
(

n`

m

)
else

, (20)

which is the number of sequences of n` bits, having ei-
ther m bits set to 1, or n`−m bits set to 1, for 0 ≤ m ≤
n`

2 . By combining each of the SK−1,n1,...,nK−1(n
∗
1−mK)

sequences having n∗1−mK ones in the residual sequence,
with each of the hK(mK) sequences having either mK

bits set to 1, or nK −mK bits set to 1, we get sequences
having (n∗1 − mK) + min(mK , nK − mK) = n∗1 bits of
1 in their residual sequence. Therefore the following re-
currence relation holds:

SK,n1,...,nK
(n∗1) =
nK∑

mK=0

hK(mK)SK−1,n1,...,nK−1(n
∗
1 −mK), (21)

where, by convention, SK−1,n1,...,nK−1(n
∗
1−mK) = 0 for

negative arguments, n∗1 −mK < 0.
We note that the recurrence is simply a convolution

sum, SK,n1,...,nK
= hK⊗SK−1,n1,...,nK−1 , and from here

we conclude that

SK,n1,...,nK = h1 ⊗ h2 ⊗ . . .⊗ hK . (22)

We can easily see that SK1,n1,...,nK1
(i) = 0 for i >∑K1

q
nq

2 , due to the fact that the optimal residual se-

quence cannot have more than
∑K1

q
nq

2 ones. Also, from
(20) we note that only 1

2K

∏K
q=1 nq terms have to be

added when evaluating all convolution sums (22).

4 Experimental results

We illustrate the classification based on NML model for
classes of Boolean regression models using the microar-
ray DNA data Leukemia (ALL/AML) of [3], publicly

available at http://www-genome.wi.mit.edu/MPR/.
The microarray contains 6817 human genes, sampled
from 72 cases of cancer, of which 47 are of ALL type
and 25 of AML type. The data is preprocessed as rec-
ommended in [3] and [2]. The resulting data matrix X̃
has 3571 rows and 72 columns.

We design a two level quantizer by using the LBG al-
gorithm [6] and the decision threshold results at 2.6455.
All the entries in the matrix X̃ are used as a training set
(but we note that no information about the true classes
is used during the quantization stage). The entries in
the matrix X̃ are quantized to binary values, resulting
in the binary matrix X.

4.1 Extending the classification for unseen
cases of the Boolean regressors

The Boolean regressors observed in the training set may
not span over all 2k possible binary vectors. If the binary
vector bq is not observed in the training set, the classi-
fication decision f∗(bq) remains undecided during the
training stage. We decide the value of f∗(bq) by using
nearest neighbor voting, taking as decision the majority
vote of the neighbors b` situated at Hamming distance 1,
for which f∗(b`) was decided during the training stage.
If after voting there is still tie we take the majority vote
of the neighbors at Hamming distance 2, and continue
if necessary until a clear decision is reached.

4.2 Estimation of classification errors achieved
with Boolean regression models with k = 3

The Leukemia data set was considered recently in a
study comparing several classification methods[2]. The
evaluation of the performance is based there on the clas-
sification error estimated in a crossvalidation 2:1 experi-
ment. In order to compare our classification results with
the results in [2], we estimate the classification error in
the same way, namely dividing at random the 72 patient
set into a training set of nT = 48 patients and a test set
of ns = 24 patients, find the optimal predictor f∗(·) over
the training set, classify the test set by using the predic-
tor f∗(·) (the extension for cases unseen in the training
set is done as in Section 4.1), and count the number
of classification errors produced over the test set. The
random split is repeated a number of nr = 10000 times,
and the estimated classification error is computed as the
percentage of the total number of errors observed in the
(nr · ns) test classifications. For comparison, we men-
tion that the best classification methods tested in [2]
have classification errors higher than 1%. As we can ob-
serve in Table 1 there are several predictors with three
genes, achieving classification rates as low as 0.004%.
We note a remarkable consensus in ranking of the gene
triplets, according to the NML codelength and to the
estimated classification error rates.

As for the genes involved in the optimal predic-
tors of Table 1, we note that five genes belong to the
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Table 1: The best 18 triplets of genes for predicting the class label according to the NML model for the classM(θ, 3, f).

Codelength Classification error [%] Triplet of Genes Gene accession numbers
6.9 0.912 1834 2288 5714 M23197 M84526 HG1496-HT1496
7.9 0.010 1834 3631 6277 M23197 U70063 M30703
7.9 0.891 758 4250 4342 D88270 X53586 X59871
8.0 0.652 2288 4847 6376 M84526 X95735 M83652
8.7 0.008 1834 3631 5373 M23197 U70063 S76638
8.7 0.007 1834 3631 6279 M23197 U70063 X97748
8.7 0.910 1144 1217 1882 J05243 L06132 M27891
8.8 0.649 302 2288 6376 D25328 M84526 M83652
8.8 0.055 1144 1834 1882 J05243 M23197 M27891
8.8 0.063 1834 1882 6049 M23197 M27891 U89922
8.8 0.004 1144 1882 5808 J05243 M27891 HG2981-HT3127
8.8 0.584 2288 3932 6376 M84526 U90549 M83652
8.9 0.558 2288 5518 6376 M84526 X95808 M83652
8.9 0.560 1399 2288 6376 L21936 M84526 M83652
8.9 0.620 1241 2288 6376 L07758 M84526 M83652
8.9 0.605 2288 3660 6376 M84526 U72342 M83652
8.9 0.582 2288 4399 6376 M84526 X63753 M83652
8.9 0.556 2288 4424 6376 M84526 X65867 M83652

set of 50 “informative” genes selected in [3], namely
M23197,M84526, M27891,M83652, X95735.

5 Conclusion

Boolean regression classes of models are powerful mod-
elling tools having associated NML models which can
be easily computed and used in MDL inference, in par-
ticular for factor selection.

The use of MDL for classification by resorting to the
class of Boolean models provides a principled and ef-
fective classification method, as we exemplify with the
important application of cancer classification based on
gene expression data. The NML model for the class
M(θ, k, f) was used for the selection of informative fea-
ture genes. When using the sets of feature genes se-
lected by NML model, we achieved classification error
rates significantly lower than those reported recently for
the same data set.

References

[1] A. Barron, J. Rissanen, Y. Bin. The minimum descrip-
tion length principle in coding and modeling. IEEE
Trans. on Information Theory, Special commemorative
issue: Information Theory 1948-1998, vol.44, no. 6,
2743–2760, Oct. 1998.

[2] S. Dudoit, J. Fridlyand, T. P. Speed. Comparison of
Discrimination Methods for the Classification of Tumors
Using Gene Expression Data. Dept. of Statistics Univer-
sity of California, Berkeley, Technical Report 576, 2000.

[3] T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard,
M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh,
J.R. Downing, M.A. Caligiuri, C.D. Bloomfield,

E.S. Lander Molecular Classification of Cancer: Class
Discovery and Class Prediction by Gene Expression
Monitoring. Science, Vol. 286, pp. 531-537, Oct. 1999.

[4] S. Kim, E.R. Dougherty. Coefficient of determination in
nonlinear signal processing. Signal Processing, 80:2219–
2235, 2000.

[5] F. Jacob, J. Monod. Genetic regulatory mechanisms in
the synthesis of proteins. Journal of Molecular Biology,
Vol. 3, 318-356, 1961.

[6] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for
vector quantization design. IEEE Transactions on Com-
munications, 28:84–95, January 1980.

[7] J. Rissanen. MDL Denoising. IEEE Trans. on Informa-
tion Theory, vol. IT-46, No. 7, 2537–2543, Nov. 2000.

[8] J. Rissanen. Strong optimality of the normalized ML
models as universal codes and information in data. IEEE
Trans. on Information Theory, vol.IT-47, No. 5, 1712–
1717, July 2001.

[9] Yu.M. Shtarkov. Universal sequential coding of sin-
gle messages. Translated from Problems of Information
Transmission, Vol. 23, No. 3, 3–17, July-September 1987.

[10] Ioan Tabus and Jaakko Astola. On the Use of MDL
Principle in Gene Expression Prediction. Journal of Ap-
plied Signal Processing, Volume 2001, No. 4, December
2001.

4


