INFLUENCE OF FIXED-POINT DSP ARCHITECTURE
ON COMPUTATION ACCURACY

Daniel Menard, Philippe Quemerais §
T LASTI - University of Rennes I
6 Rue de Kerampont
22300 Lannion, FRANCE
{name}@enssat.fr

ABSTRACT

The minimization of cost, power consumption and de-
velopment time of DSP applications requires the devel-
opment of methodologies for the automatic implemen-
tation of floating point algorithms in fixed point archi-
tectures. In this paper, the influence of the DSP archi-
tecture on the computation precision is analyzed. The
necessity of taking into account the DSP architecture
model in the data coding process is shown. Then, a new
methodology for the implementation of algorithms into
fixed-point DSPs is defined.

1 INTRODUCTION

Most digital signal processing algorithms are imple-
mented in fixed-point architecture in order to satisfy
the cost and power consumption constraints of embed-
ded systems. The reduction of the time-to-market of
applications requires high-level development tools that
allow the automation of some tasks. Nevertheless, the
manual transformation of floating-point data into fixed-
point data is a time-consuming and error prone task. In-
deed, some experiments [1] have shown that this manual
conversion can represent up to 30% of the global imple-
mentation time. Thus, methodologies for the automatic
transformation of floating-point representation into a
fixed-point representation have been proposed [2, 3].

For Digital Signal Processor (DSP), the aim of the
methodology is to define the optimal fixed-point data
formats which maximize the precision and minimize
the size and the execution time of the code. Existing
methodologies [2, 3] achieve a floating-point to fixed-
point transformation leading to an ANSI-C code with
integer data types. Nevertheless, the different elements
of the target architecture are not taken into account for
the fixed-point data coding.

In this paper, the influence of the fixed-point DSP
architecture on the computation precision is analyzed.
This study underlines the necessity of taking into ac-
count the DSP architecture for optimizing the data cod-
ing. Firstly, a review of the different elements of the
DSP data path, able to influence the computation pre-
cision and the recent evolutions are detailed. Then, the

Olivier Sentieys 1
T IRISA/INRIA
Campus de Beaulieu
35042 Rennes cedex, FRANCE
sentieys@irisa.fr

approach followed for analyzing the influence of the DSP
architecture on the computation precision and the re-
sults obtained for different applications are presented.
Finally, a new methodology for the implementation of a
floating point algorithm into a fixed-point architecture
is introduced.

2 DSP ARCHITECTURE

DSP architectures are designed to compute efficiently
the arithmetic operations involved in digital signal pro-
cessing applications. Different elements of the data path
influence the computation precision. Each processor is
defined by its native data word-length which is the word-
length of the data that the processor buses and data
path can manipulate in a single instruction cycle [4].
For most of the fixed-point DSPs, the native data word-
length is equal to 16 bits. For ASIP or some DSP cores,
this native data word-length is customizable in order to
fit better the architecture to the target application.

Most of the DSPs allow the achievement of a multiply
accumulate (MAC) operation without lost of informa-
tion, by computing the operation in double precision.
The word-length of the adder and the multiplier output
is equal to the double of the native data word-length.
Nevertheless, the increase of data dynamic range due to
successive accumulations can lead to an overflow. Thus,
some DSPs [5, 6] extend the accumulator word-length
by providing guard bits. These supplementary bits al-
low the storage of the additional bits generated during
successive accumulations.

The number of storage elements present in the data
path influences the computation precision. Indeed, some
data are spilled into memory when any data path regis-
ter is free for storing these intermediate data. For lim-
iting the execution time of the data transfer, these data
are stored in memory in single precision and thus a cast
operation is achieved. In conventional DSP architecture
[5, 6, 7], the limited number of accumulator registers can
lead to an important number of spill operation.

In order to decrease the execution time of the code,
some recent DSPs like the TMS320C64x [8] and the
TigerSharc [9], allow the exploitation of the data-level

parallelism by providing SWP (Sub-Word Parallelism)
capacities. An operator (multiplier, adder, shifter) of
word-length IV is split in order to execute k operations
in parallel on sub-word of word-length N/k. Thus, these
processors can manipulate a wide diversity of data types
(8, 16, 32, 40, 64 bits). Nevertheless, the use of SWP
instructions can require to achieve the computation in
single precision® in order to compute the same number
of operations on the multiplier and the adder.

Given that the data word-lengths in a DSP are lim-
ited, scaling operations are required in order to maintain
the maximal precision. Different kinds of shift register
are available for scaling operations. For some processors
[7, 6], a specialized shift register is situated at the out-
put of the multiplier and several specific shifts can be
achieved. When this kind of shift register is present, the
output multiplier can be scaled without supplementary
cycles. For more flexibility, most of the recent DSPs of-
fer a barrel shifter performing any shift operation in one
cycle. For VLIW DSP [9, 8], the architecture is homo-
geneous and the barrel shifter can scale the output of
a multiplication or an addition. Nevertheless, in MAC
based architecture [5, 6, 7], this kind of shifter is con-
nected to the accumulator register and can only scale
efficiently the output of an addition.

When a scaling operation occurs, the quantization
mode used by default is the truncation. But this
process leads to a non-centered quantization noise.
Thus, some DSPs [5, 9] provide a rounding mode in
order to eliminate this bias.

3 EXPERIMENTS

The most commonly used criteria for evaluating the pre-
cision of a fixed-point implementation is the Signal to
Quantization Noise Ratio (SQNR). The architecture in-
fluence on the computation precision has been studied
through the comparison of the output SQNR resulting
of the implementation of several digital signal process-
ing algorithms in different DSPs. Firstly, the approach
for fixed-point data coding in the case of FIR and IIR
filters is described. Then, the approach for precision
evaluation and the different quantization noise sources
are presented.

3.1 Fixed-point data coding

A fixed-point data is made up of an integer part and a
fractional part. The number of bits required for the inte-
ger part is defined from the dynamic range of the data in
order to avoid the occurrence of an overflow. The data
dynamic range is obtained from the /; norm [10]. The
diversity of data dynamic range requires to scale some
data in the algorithm in order to maintain a sufficient
precision. If the dynamic range of the data increases,
supplementary bits for the integer part are required in

Lthe multiplier input and output word-lengths are identical

order to avoid an overflow. Different alternatives can be
considered for introducing these supplementary bits for
MAC operations. For some DSPs the word-lengths of
the adder and the accumulator register are greater than
the word-length of the multiplier output. The presence
of these guard bits within the accumulator allows the
storage of the supplementary bits issued of successive
accumulations. Otherwise, if the multiplier output can
be shifted, a scaling operation can be inserted between
the multiplication and the addition (internal scaling).
For processors without guard bits or the capacity of scal-
ing the multiplier output, the scaling is achieved on one
of the multiplier inputs. Firstly, the filter input can be
scaled in order to insert the supplementary bits (Exter-
nal scaling). Otherwise, an alternative is to scale the
filter coefficients by introducing the supplementary bits
during the coefficients coding. For this last technique no
cycle is wasted for scaling the data but the frequency re-
sponse of the filter is modified.

3.2 SQNR computation

The SQNR is defined as the ratio of the signal power to
the quantization noise power. This quantization noise
present at the output of the system corresponds to the
difference between the outputs of the fixed-point and
floating-point versions of the system. For the different
applications, the SQNR has been computed with our
methodology presented in [11]. This method determines
automatically the analytical expression of the signal and
noise power at the output of a linear system. The out-
put quantization noise is modelized as the sum of the
output noises due to the quantization of the coefficients
and the noises b, due to the propagation in the system of
the noise sources b, presented in the next section. The
determination of the frequency response of the trans-
fer functions between the system output and each noise
sources b/, is required for computing the statistical pa-
rameters of the noise b,. These transfer functions are
automatically computed from the Signal Flow Graph
(SFG) of the system.

3.3 Noise sources

The elimination of some bits during a cast operation
leads to a quantization noise. The statistical parame-
ters of this quantization noise are defined from a noise
model [12] according to the number of bit eliminated,

Figure 1: FIR filter noise model

1 . s RSBQFIR256
x 5 C54x (16,32,40) 1
E e Se o @ C50x (16,32,32,d)
7 S—=5 - DSP16x(16,32,36,d
g & g ® 5 g ¢)
E 5 o8 § &
S [s]
¢ P g
60 N &
25
s 9
g 5 & o o
o 50 S g g
= <
2 g ¢
2 &
g 5
40 = &
IS4 s
C64x: (16,32,32) g g
C64x (BG)?: (16,32,40) y 2
01 Ceax(d): (16,32,32,d) g8
C64x(S2)% (16,16,16) o o
C64x(S2d): (16,16,16,d)
2 Processors
45 - . .
RSBQ IR (biquad direct form 1)
=~ @ °
f é o TigerSharc(S2): (16,32,32)
401 3 & 8 TigerSharc(S2-d): (16,32,32,d)
°© % g TigerSharc(S4): (16,16,16)
g £ TigerSharc(S4-d): (16,16,16,d)
35 &
& 3 =
= 8 g
o 30 g o Oe. .
@ & o~
3¢ &3 g
§ ¢ & °
» 8 3 SR =
S - s
& g 8 _ g
¢ ¢ 8 5
20 4 F/":'; @‘g é(8
g 8 S e
= = Y

15— Processors

1 Processor (multiplier input word-length, multiplier output word-length,
adder word-length , d: multiplier output scaling);

2BG: Guard Bits
3 Processor(Sx) SWP instruction executing x operations in parallel

Figure 2: Output filter SQNR evolution

the format of the data and the quantization mode used.
The SFG of a FIR filter is given at figure 1 and the
different potential noise sources b/, are reported in this
SFG and detailed below. The noise b, is made up of two
noises by, and by,. by, corresponds to the quantization
noise associated with the input and the noise by, is gen-
erated if the input x is scaled during an external scaling.
The noise by,; present at the output of the multiplier is
made up of two noises byp,sp and byy,q. The noise bgu,sp
is generated if a single precision multiplier as in SWP
instructions is used. The scaling of the multiplier out-
put during an internal scaling leads to the quantization
noise bgmq- The quantization error associated with each
coefficient ¢; is A.,. Finally, bgmem is the noise due to
the cast operation required for storing the filter output

in memory.

4 EXPERIMENTS RESULTS

In this section the results of the experiments done on
several digital signal processing algorithms are analyzed.
The SQNR obtained for the implementation of FIR and
IIR filters into several DSPs are presented in the figure 2.
The input and output of the filter are stored in memory
on 16 bits.

High performances can be obtained with guard bits
(TMS 320C54x) for successive accumulations like in FIR

filters. However, these guard bits can not be exploited
in IIR filters since the dynamic range of the adder in-
puts and output are closed. In this case, a scaling of the
filter input is necessary (C54x, C64x(BQ)). The scaling
of the multiplier output leads to good results for both
kinds of filter (C64x (d), TigerSharc (S2-d)). For a pro-
cessor without guard bits or the capabilities to scale
the multiplier output, the filter input or the coefficients
must be scaled. In both cases, the performances ob-
tained in double precision are definitely inferior since
the scaling operation is done before the multiplications.
The decrease of performance due to the single precision
computation with SWP instructions, is important for
a truncation quantization mode (C64x (S2)). However,
for rounding quantization mode (TigerSharc (S4)) this
decrease of performance is definitively lower. This kind
of instruction can significantly reduce the code execu-

tion time.

For VLIW processors (C64x, TigerSharc), the results

of an implementation without multiplier output scaling
(MOS) has been tested since it can lead to a smaller
execution time. For illustrating and quantifying this
aspect, the execution time extra cost Cs; due to MOS,
has been measured on different algorithms implemented
into a TMS320C64x. Cs represents the ratio between
the additional execution time due to MOS and the exe-
cution time of the algorithm without MOS. The results
are reported in table 1. This extra cost depends of the
average IPC (instructions per cycle) obtained for the fil-
ter core section without MOS. When the I PC is closed
to its maximal value 8, the extra cost is relatively im-
portant. Indeed, most of the functional units are used
and supplementary cycles are required for executing the
scaling operations. When the IPC decreases, the extra
cost, diminishes and can climb to 0%.

The experiments achieved with the FFT algorithm
underline the influence of the number of storage ele-
ments available in the data path. Indeed, for computing
respectively a radix 2 and a radix 4 FFT butterfly, 2 and
6 storage elements are required for storing the interme-
diate variables. Thus a lack of register leads to a SQNR
degradation of 4dB for a radix 2 FFT butterfly.

These different experiments show the necessity of tak-
ing the different elements of the DSP architecture into
account in order to optimize the data coding.

Filter IPC Cs

Real single sample FIR

Real block FIR 6 22
Real symmetrical FIR 7.2 47
Real symmetrical block FIR 7.4 35
Complex single sample FIR 6.5 45
Complex block FIR 4.875 0

2.8 18

Biquad block IIR

Table 1: Multiplier output scaling extra cost

5 A NEW METHODOLOGY

The aim of this section is to present a new methodol-
ogy for the implementation of floating-point algorithms
into fixed-point DSPs under SQNR constraint. Avail-
able methodologies [2, 3] transform the floating-point
C source code into an ANSI-C code with integer data
types. Nevertheless, the different elements of the archi-
tecture are not taken into account for the fixed-point
data coding. In our methodology, the determination
and optimization of the data format is directed by the
SQNR constraint. Moreover, the DSP architecture is
completely taken into account during these two phases.
The different phases of our methodology are represented
at figure 3.

The first stage of the methodology is the determina-
tion of the data dynamic range. The results obtained are
used for the definition of the minimal number of bits re-
quired for the integer part of the data in order to avoid
an overflow. Then, the data are coded in two steps.
The goal of the first step is to define the word-length
of each data in order to take account of the diversity
of the data types available in DSPs. The methodology
selects the instructions which respect the SQNR con-
straint and minimize the code execution time. The for-
mat of each data is determined according to the DSP
architecture. More especially, the scaling operations
required for adapting the data format to the dynamic
range or for respecting the fixed-point arithmetic rules
are introduced according to the DSP shifter capacities.
The second step corresponds to the data format opti-
mization in order to minimize the code execution time
as long as the SQNR constraint is fulfilled. This opti-
mization is done by eliminating some scaling operations
and is achieved in parallel with the scheduling stage.
Indeed, as shown in the previous section for VLIW pro-
cessor, the extra cost due to a scaling operation depends
on the instruction scheduling.

The determination and optimization of the data for-
mats are made under SQNR constraint. The methodol-
ogy briefly presented in section 3.2 and detailed in [11]
is used for evaluating the SQNR.

6 CONCLUSION

In this paper, the influence of the DSP architecture on
the computation accuracy is analyzed. The different
results allow the comparaison of different DSP architec-
ture models. Thus, this kind of study can expand the
classical performance measurement methodologies [13]
based on code size or execution time measurement.
The diversity of data word-lengths offered by new
DSP architectures requires investigation and evaluation
of the tradeoff between accuracy, code size and execution
time. Therefore, a new methodology for implementing
floating-point algorithm in fixed point architecture un-
der SQNR constraint is proposed. This study allows the
definition of the different elements of the architecture re-

C Code |

Front End

Code selection

Dynamic range
determination

ONRgngraintk — P Data format
determination

»
»

Architecture

SONR
modelisation

evaluation Register alocation

— Scheduling

3J10MawWel) uolelsuab spo) —

Data format

optimization Cotinization

&2 N Roonslra.im_’

(i

v

Assembly code

Figure 3: Methodology representation

quired for the modelisation of the processor. Moreover,
this method is coupled with the code generation pro-
cess in order to minimize the code execution time under
SQNR constraint.

References

[1] T. Grotker, E. Multhaup, and O.Mauss. Evaluation of
HW/SW Tradeoffs Using Behavioral Synthesis. In ICSPAT-
96, Boston, October 1996.

[2] K.I. Kum, J.Y. Kang, and W.Y. Sung. AUTOSCALER for C:
An optimizing floating-point to integer C program converter

for fixed-point digital signal processors. IEEE Transactions
on Circuits and Systems II, 47:840-848, September 2000.

[3] M. Willems, V. Bursgens, and H. Meyr. FRIDGE: Floating-
Point Programming of Fixed-Point Digital Signal Processors.
In ICSPAT-97, San Diego, 1997.

[4] P.Lapsley, J. Bier, A. Shoham, and E. A. Lee. DSP Processor
Fundamentals: Architectures and Features. Berkeley Design
Technology, Inc, Fremont, CA, 1996.

[5] Texas Instruments. TMS320C54X DSP CPU And Periph-
erals Reference Set. Texas Instruments, Dallas, Jan. 1999.

[6] Lucent Technologies. DSP16zz Information Manual. Lucent
Technologies, January 1998.

[7] Texas Instruments. TMS320C5X User’s Guide. Texas In-
struments, June 1998.

[8] Texas Instruments. TMS320C64z Technical Overview. Texas
Instruments, February 2000.

[9] Analog Device. TigerSHARC Hardware Specification. Ana-
log Device, December 1999.

[10] L.B. Jackson. On the Interaction of Roundoff Noise and Dy-
namic Range in Digital Filters. The Bell System Technical
Journal, 49(2), Feb. 1970.

[11] D. Menard and O. Sentieys. Automatic Evaluation of the
Accuracy of Fixed-point Algorithms. In DATE-02, Paris,
March 2002.

[12] G. Constantinides, P. Cheung, and W. Luk. Truncation Noise
in Fixed-Point SFGs. IEE Electronics Letters, 35(23):2012—
2014, November 1999.

[13] BDTi. The BDTImark2000: A Measure of DSP Execution
Speed. Technical report, BDT Inc, 2001.

