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ABSTRACT

This paper considers Markov Chain Monte Carlo (MCMC)
methods for the estimation in Additive White Gaussian
Noise (AWGN) of discrete chaotic signals generated iter-
ating any unimodal map. In particular, the Metropolis-
Hastings (MH) algorithm is applied to the estimation of sig-
nals generated by iteration of the logistic map. Using this
technique, Bayesian Minimum Mean Square Error (MS) and
Maximum a Posteriori (MAP) estimators have been devel-
oped for any unimodal map. Computer simulations show
that the proposed algorithms attain the Cramer-Rao Lower
Bound (CRLB), and outperform the existing alternatives.

1 INTRODUCTION

Chaotic signals have received much attention during the last
years. We will concentrate on discrete chaotic signals, i.e.
signals generated iterating a system of difference equations
(nonlinear map). These signals are potentially attractive for
a wide variety of signal processing applications ranging from
time-series modeling to communications. However, classical
signal processing techniques are not adequate for this class of
signals, which possess properties typical of random signals,
in spite of being deterministic. Consequently, there is a need
for robust and efficient detection and estimation algorithms
for this kind of signals in noise.

The Maximum-Likelihood (ML) estimator of signals gen-
erated by any Piecewise Linear (PWL) map has been ob-
tained in [1]. However, it has a high computational cost,
that may not be reduced except for certain cases, such as
the tent-map, for which an efficient algorithm has been de-
veloped in [2]. Bayesian estimators have also been proposed
in [3] for signals generated by the tent-map, and extended
to any PWL map in [4]. However, these methods can only
be applied to PWL maps, and signal estimation alternatives
proposed for unimodal maps are in general suboptimal. In
[6] a dynamical programming ML estimator, as well as a
method based on the itinerary of the signal called “halving
method”, are proposed. In [6] a method based on the con-
nection between the symbolic sequence associated to a par-
ticular signal and its initial condition is presented. Bayesian
estimators for signals generated by any unimodal map have
not been considered yet.

On the other hand, MCMC techniques are an effective way
of generating samples from a complicated probability density
function. The most widespread MCMC algorithm is the MH
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algorithm [7], which proceeds by selecting a candidate point
according to a proposal distribution, and accepting it with a
certain probability [7]. MCMC based algorithms have been
extensively used recently to solve a large variety of problems
in communications [8], time-series modeling and prediction
[9], and statistical physics and artificial intelligence [7].

In this work, we develop Bayesian estimators based on
the MH algorithm for chaotic signals generated iterating any
unimodal map. In particular, MS and MAP estimators are
developed for signals whose dynamics are governed by the
logistic map. The selection of the prior density is based on
the invariant density associated with the chaotic sequences.
Since we are not able to sample directly from the resulting
posterior density, we will make use of the MH algorithm. To
avoid the numerical instability characteristic of chaotic sig-
nals, an alternative parameterization is considered, and the
sequence is generated by backward iteration. The resulting
MAP and MS estimators outperform the existing subopti-
mal alternatives, are asymptotically unbiased, and attain the
CRLB for a high Signal to Noise Ratio (SNR).

2 THE LOGISTIC MAP

The signals that we consider in this work are generated ac-
cording to

z[n + 1] = F(z[n]), (1)
where F(-) is a nonlinear noninvertible map, that we will as-
sume known and unimodal. In this work we will concentrate
on the so called logistic map, which is defined as

F(z) = Ax(1 — ), (2)

for some bifurcation parameter 1 < A < 4. This map shows
chaotic behaviour for A > 3.5699456 [10], with a unique at-
tractor for each value of A that is reached by most initial con-
ditions. However, in contrast with the family of tent-maps,
there are regular windows for certain values of A inside the
chaotic region [10]. Although the logistic map is noninvert-
ible, as it is unimodal, it has only two inverse images, which
can be easily obtained from

o] = F0(eln+1]) =05 (14 /T = da[n +1]/X ) . (3)

We may divide the phase space of the logistic map into
two non-overlapping regions E; = [0,0.5) and E» = [0.5, 1],
and associate a symbol s[n] to each z[n] according to

s[n] = sign(z[n] — 0.5). 4)

Now we can define the sequence s = {s[0] ... s[IV — 1]} as-
sociated with a length IV + 1 chaotic signal, which will be



its itinerary, and can be considered a symbolic coding of the
chaotic signal. For A = 4, which will be the parameter value
considered throughout the work, it is straightforward to ex-
press (3) as a function of s[n] using (4)

afn] = F P (eln +10) = 05 (14 sln](1 - a[n + 1)),

where the subindex s[n] in F(~Y(.) stresses the fact that
backward iteration requires knowledge of the sign of the pre-
vious sample.

3 BAYESIAN ESTIMATION

3.1 Problem Statement
The signal model we are considering is

y[n] = z[n] + wn] n=0,..N.

The chaotic signal that we wish to estimate x[n] is generated
iterating (2) according to (1) for an unknown initial condi-
tion z[0] € (0,1), and w[n] is a stationary AWGN process
with zero mean, and variance o2.

3.2 Prior Density

To develop Bayesian estimators, we need to define the prior
density for the whole sequence x = {z[0] ... z[IV]}. But first
we require the prior density for a single point of the sequence.
The natural choice is to assign the invariant density associ-
ated with the signals generated by the logistic map. When
A =4, it is possible to obtain a closed-form expression for the
invariant density of the sequence using the Frobenius-Perron
operator, which yields [10]

1

Thus, as the whole sequence is completely defined for a given
value of z[0], the prior density of x for A = 4 will be

— F™) (o))
p(x) = 00— 200] 0<zn]<l (6)

Where F(™(.) denotes de n-fold functional composition of
F, and 0 is Dirac’s delta. For all the other values of A in the
chaotic region no closed-form expressions are available. In
these cases a staircase approximation of the invariant density,
as in [3], will be considered.

3.3 Posterior Density

Since our observations y = {y[0] ... y[IN]} are a collection of
independent Gaussian random variables with equal variance,
their conditional density may be expressed as

1 J(x
p(ylx) = (2mo2)(N+1)/2 €xp <_ 2572)> J (M)
where ¥
J(x) =Y (yIn] — z[n])? = |ly — x]f3.

Using (6) and (7), and applying the Bayes rule, the posterior
density of the sequence x becomes

14 (aln] - F*) a(0]))

x|y) = K 2=t exp | — (%)
piiy) = K= e (<5 ©)

where K is a normalization constant. The dependence on
z[1], ..., z[N] can be eliminated by integration, thus obtaining
the marginal density

K ex _J(Xo)
20](L —2[0]) p( 202)’ ®)

where xo = {x[0] F([0]) ... F™ (£[0])} is the whole sequence
expressed as a function of z[0] using (1) and (2).

In this case it is not possible to obtain Bayesian estimators
directly from (8) or (9), since we do not have a closed-form
expression for F(™)(.), as in the case of PWL maps [1]. A
gradient-descent approximation is not possible either, be-
cause J is not quadratic in the initial condition, as in [3],
but a polynomial of order 2V +!. Moreover, the estimation
of the chaotic signal using (9) will suffer from the propa-
gation of errors and numerical instability characteristic of
chaotic systems. Therefore, the complementary problem will
be considered: estimating the last point of the sequence and
the itinerary of the signal. For this purpose, we will use an
hybrid parameterization of the signal as a function of the
itinerary and z[N]:

0 = {s[0] ... s[N — 1] 2[N]}.

Now z[N] and the itinerary may be expressed as z[N] =
O(N +1) and s = 6(1: N) respectively And, the whole se-

quence becomes xg = { 0(1: N)( z[N]) .. Fé(;;( [N]) z[N]}.

The prior density in this case has an expression similar to (6),
but substituting the information on the z[n] by the itinerary:

p(z[0]ly) =

22 Pnd (S - Sn)

) = —— :
T )

Being s,, each of the 2V possible itineraries, and p,, the prob-
ability of each itinerary. Hence, the posterior density now

may be expressed as
J(x0,,)
6 n
S (22),
(10)
where xg,, is the sequence obtained iterating backwards from

z[N] usign s,, and, since the itineraries are equiprobable,
prn = p, and may be incorporated into K.

p(Oly) =

3.4 MAP and MS Bayesian Estimators

Two Bayesian estimators will be considered: MAP and MS.
The MAP estimator of the sequence is given by the value of
x that maximizes (8). However, since the MAP estimate is
always a valid sequence x (one that agrees with the signal
model given by (1) and (2)), it is completely defined by the
initial condition z[0], and may be obtained alternatively as
the value of z[0] which maximizes (9), or the value of @ which
maximizes (10):

xmap(0) = 2Zwmap[0] = al‘gz[{)r]lax{p(l'[()”y)} =
= F7N L Ouap(N £ 1)), (11)

The MS estimate of the sequence is the mean of the poste-
rior density given by (8). In this case the MS estimate of the
sequence will not be a valid sequence in general, i.e. the MS
estimate of the sequence Xus obtained integrating (8) will



not be a sequence generated iterating (2) according to (1).
Therefore, (11) is not valid for the MS estimator, and the MS
estimates obtained using (9) and (10) will be projections of
Xms over the subset of valid sequences.

4 MCMC BAYESIAN ESTIMATORS

In this paper we consider the use of the MH algorithm [7] to
obtain samples from the posterior density p(@]y). As a start-
ing point for the algorithm we will use the Hard-Censoring
(H-C) estimate of 8, i.e. 89 = {sign(y[0]—0.5) ... sign(y[/N —
1] — 0.5) y[IN]}. The steps for the k-th iteration of the algo-
rithm are:

1. Generate a random variable z according to the invariant
distribution of the tent-map, uniform in [0,1] [10].

2. Use the equivalence relationship h(z) between the tent-
map and the logistic map [10]
h(z) = sin® (zrz/2)
to obtain a sample z;x[N] = h(z) according to the in-
variant distribution of the logistic map.
3. Construct a candidate ¢, = {0, (1: N) zx[N]}

4. Accept the new sequence, thus updating the current
state, according to the acceptance function

A(oka d)k) = min(17 Q(eka ¢k))7

being 6;, = {0x(1: N) zx[N]} the current state, and
Q(Oy, ¢,,) the relationship between p(¢,|y) and p(Ory)

(N + 1)1 -0, (N+1)
QO pr) = (¢k(N+1)(1—¢k(N+1)))

oy (L8~ x0))

202

5. Construct a new candidate qb,(co) ={-05(1) 0;(2: N +
1)}, where 6}, is the updated current state.

6. Accept the new sequence, thus updating the current
state, according to the acceptance function

A(0;,0”) = min(1,Q(0;, 6)), (12)

where

J(xoz) = J(x40)
Qm,%=m( o )

7. Repeat steps 5 and 6 for s[1], ..., s[IV — 1], i.e. for each
s[n] construct a candidate ¢\ = [05(1: n) — O} (n+
1) O;(n + 2: N + 1)], and accept the new candidate,
thus updating the current state, according to (12).

8. Store the N +1 sequences obtained and go back to step
1 to start iteration k + 1.

To allow the distribution of the Markov chain to converge
to p(@|y) we establish a “burning period” [7], i.e. the first
iterations of the algorithm will not be considered for the
Bayesian estimation. From the samples obtained using the
previous algorithm it is straightforward to obtain the MAP
estimate, as the sequence @) which maximizes (10), and,
through backward iteration obtain Zymap[0].

The MS estimate of the sequence will not be a valid se-
quence in general. However, the MS estimate for any point

of the sequence can be easily obtained using Monte Carlo
integration:

M

. 1 —(N-n

busln] = 52D Fo oy (0N +1)), (13)
i=1

where M is the number of samples obtained (N + 1 multi-
plied by the number of iterations). Using (13) to estimate
z[0] and iterating forward, we obtain an estimator for the
whole sequence that we will call MH-MS1. Xxuu-ms1 is a
projection of Xygs over the subset of valid sequences, that
shares the initial condition with xms. This can be viewed as
the best MS estimator if we are only interested in the Mean
Square Error (MSE) of £[0]. However, if we are interested
in minimizing the MSE of the whole sequence, Xmu-Ms1 1S
not the best projection. A better estimator, that we will
call MH-MS2, is obtained using Xus[N], and iterating back-
wards using the most likely itinerary to generate the whole
sequence XyH-MS2. XMH-MS2 1S @ projection of Xys over the
subset of valid sequences, that shares the itinerary and end-
ing point of the sequence with Xus.

5 MCMC SIMULATION RESULTS

In this section we analyze the performance of the three esti-
mators considered. First, we study their behaviour for short
sequences, namely with N = 5. Fig. 1 shows an example of
the performance of the three estimators for z[0] = 0.55 and
1000 simulations. We use the first 5000 iterations as burning
process, and the next 40000 iterations to evaluate the MSE of
the initial condition z[0]. Since for each iteration N +1 can-
didates are considered, a total of 30000 and 240000 sequences
are considered for the burning process and estimation of the
MSE respectively. All the MCMC approaches behave simi-
larly, attain the CRLB at approximately 35 dB, and improve
considerably the performance of the H-C estimator.

To assess the actual performance of the Bayesian estima-
tors developed, we have conducted a simulation for 1000 ini-
tial conditions distributed according to (5). For each ini-
tial condition 1000 experiments have been performed, with
a burning process of 250 iterations, and 1000 iterations to
obtain the MSE. The results for the MSE of z[0] are shown
in Table 1, and for the MSE of the whole sequence in Table
2. In both cases the MCMC based estimators outperform
the H-C estimator considerably.

Finally, the behaviour of the proposed MCMC algorithms
for long registers is investigated. Fig. 2 shows a typical
curve for N = 29 and z[0] = 0.688. In this case the MSE
of the whole sequence must be considered. Therefore, only
the MH-MS2 algorithm, which concentrates on the whole
sequence rather than just on z[0], is shown. Although the
MH-MS2 algorithm outperforms the H-C estimator, the gain
is not as noticeable as in the case of short registers, while the
computational load in this case is much higher.

6 CONCLUSIONS

In this work we propose an alternative to obtain MS and
MAP Bayesian estimators using MCMC techniques for any
chaotic signal generated by iterating a unimodal map, and
observed in AWGN. In particular, the MH algorithm is ap-
plied to the estimation of signals generated by the logis-
tic map. First, we construct the posterior density of the
sequence using the invariant density associated with the
chaotic signals as prior density. Since we are not able
to sample directly from the resulting density, we use the
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Figure 1: MSE(dB) of x[0] for N = 5, z[0] = 0.55, Ntest =
1000, Nburning = 5000, and Niter mcmc = 40000.

MSE (dB)
MCMC
SNR (dB) | H-C [ MAP | MSI | MS2 | CRLB

10 175 | 179 | 188 | 175 | 417
15 25.1 | 254 | 260 | 25.0 | 46.7
20 329 | 334 | 339 | 329 | 51.7
25 40.2 | 42.0 | 424 | 41.1 | 56.7
30 449 | 504 | 505 | 49.1 | 61.7
35 475 | 59.5 | 59.2 | 57.6 | 66.7
40 491 | 67.1 | 66.8 | 65.2 | 71.7
60 55.3 | 90.6 | 89.4 | 89.3 | 91.7

Table 1: Average CRLB and MSE of z[0] for the four esti-
mators considered, N = 5 and 1000 initial conditions.

MH algorithm to obtain samples of z[N] and the itinerary.
Then, through backward iteration, we obtain samples of the
whole chaotic sequence, which allow us to calculate MS and
MAP Bayesian estimators. Using computer simulations the
MCMC Bayesian estimators are shown to outperform the
existing suboptimal alternatives. The main disadvantage of
these techniques is the high computational cost associated to
MCMC algorithms. Further research lines include applying
this technique to other maps, and studying ways to acceler-
ate the convergence rate.
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