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ABSTRACT

This paper introduces a robust affine projection al-
gorithm for nonlinear acoustic echo cancellation using
simplified Volterra filters. Numerically unstable step
of affine projection algorithm, matrix inversion, is im-
proved by approximating the symmetrical matrix with
a Toeplitz matrix and applying Levinson-Durbin recur-
sion. Furthermore, the adaptive filter weight update is
simplified such that the complexity of the algorithm is
comparable to the number of the filter parameters. The
simulation results show a slightly better performance
than that of the well known normalized LMS algorithm.

1 Introduction

Acoustic echo cancellation has received growing interest
in recent years since many governments have forbidden
or will forbid the use of cellular phone while driving
a car unless a hands-free set is used. In hands-free sets
amplifiers, loudspeakers and microphones must be small
and they cannot be very expensive. Therefore, they in-
troduce considerable nonlinearities (acoustic distortion)
when volume level is high.

General configuration of an echo canceler is shown in
Figure 1. We consider echo cancellation during single
talk and assume that the level of the near-end signal
e(n) is low compared to the level of echo y(n). For
hands-free telephones echo attenuation has to be 40 dB
during single talk, according to ITU-T Recommendation
G.167, while when an adaptive linear filter is used, the
echo return loss enhancement

E(d?(n))
ERLE = 10log;, E(@(n))
achieves its best at about 20-30 dB (d(n) — echo, é(n)
— residual echo) in realistic environments [3].

Acoustic linear echo path has been successfully mod-
eled using an adaptive filter, usually normalized LMS
algorithm, but also affine projection algorithm or RLS
algorithm [4]. When model of the echo path is linear
in parameters, the parameters can be updated directly
using a linear adaptive filtering algorithm. Parameter
update is proportional to the echo canceler output é(n)
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Figure 1: General configuration of an acoustic echo canceler.
Signals: z(n) — far-end, y(n) — echo, e(n) — near-end, d(n)
— microphone, §(n) — replica of the echo and é(n) — echo
canceler output.

unless a numerically stable variant of RLS, QR-RLS -
algorithm, is used. Then the parameters are found by
solving a triangular system of equations that is updated
using far-end signal z(n) and microphone signal d(n)
directly.

There is always some considerable misadjustement
present when normalized LMS algorithm is used while
RLS algorithm computes an optimal linear estimate of
the underlying echo path in least squares sense. RLS
algorithm (and its numerically stable variant QR-RLS)
is computationally demanding and its fast variants are
very sensitive to numerical error. This has lead to the
development of affine projection algorithm [2].

The computational complexity of the ordinary affine
projection algorithm is O(M P + P2), where M is the
number of parameters of the underlying adaptive filter
and P is the projection order, while the computational
complexity of normalized LMS is O(M) and of RLS is
O(M?). The projection order P is usually much smaller
than the number of parameters M, but when M is large
or the projection order P moderate there is still a need
to further simplify the algorithm.

In this paper we generalize the robust fast affine pro-
jection algorithm presented in [5] for simplified Volterra
filters [1] and analyze its performance using real data
measured in realistic environment. We compare its per-
formance to that of linear filter and to the performance



of adaptive simplified Volterra filter where the normal-
ized LMS or QR-RLS algorithm is used for adaptation.

The organization of this paper is as follows. In the
next section we review the robust affine projection algo-
rithm and generalize it for simplified Volterra filters. In
section 3 we simulate and compare performance of the
filters in acoustic echo cancellation in hands-free sets.
Some concluding remarks are found in the last section.

2 The algorithm

We will begin from the ordinary affine projection that
is a generalization of the well known normalized LMS
algorithm. Let z(n) be the input (far-end signal), d(n)
the desired output (microphone signal) and let

i(n) = (z(n),z(n —1),...,2(n — M +1))T
be the time varying input vector,
U(n) = (@(n),d(n —1),...,d4(n— P +1))
the corresponding input matrix, and
d(n) = (d(n),d(n = 1),...,d(n— P+ 1))T

the desired response vector. Then the filter weights @(n)
can be updated as follows

gin) = UT(n)d(n—1)

én) = dn)-iin)

R(n) = UT(n)U(n) +46I

@(n) = @(n—1)+pU(m)R 1 (n)én),

where p is the step-size and § the regularization param-
eter (I being an identity matrix). When the projection
order P equals one the algorithm reduces to normalized
LMS algorithm.

When the affine projection algorithm is applied for
adaptive nonlinear filters the input vector @(n) is simply
replaced by an extended input vector. When the robust
fast affine projection algorithm is generalized we must
consider certain simplifications.

The first simplification follows from that if the
step size p equals one and the regularization parame-
ter § equals zero, then €(n) = (e(n),0,...,0)7 where
e(n) = d(n) — y(n) (the echo canceler output), y(n) =
@(n)T1W(n—1) being the adaptive filter output (replica of
echo). Then only the first column of the inverse of R(n)
is needed. When the step-size differs from one or the reg-
ularization parameter differs from zero we may still ap-
proximate the vector €(n) with €(n) = (e(n),0,...,0)T
pretty accurately.

The second simplification concerns the symmetrical
matrix R(n). The matrix R(n) is of the form

rp—_1(n)
rp—a(n —1)

ro(n — P +1)

where
M-1
rp(n) = @(n)"i(n —p) = Y z(n —m)z(n —m —p).
m=0

Since usually M >> P the elements
rp(n) 2 rpn—1)=~---~ry(n—P+1)

and we may approximate R(n) with a Toeplitz matrix

ro(n)  ri(n) rp—1(n)
B(n) = ri(n)  ro(n) rp—2(n)
rp_1(n) rp_a(n) --- ro(n)

Using both the simplifications we may compute an esti-
mate §(n) of the product R~!(n)é(n) efficiently in O(P)
operations using Levinson—-Durbin -algorithm. Further-
more, the numerical stability of the inversion can be
monitored.

The third simplification concerns the computation
of U(n)g(n) that as such requires O(M P) operations.
Firstly, the product is approximated by

pU(n)g(n) = d(n — P+ 1)sp-1(n),

where
sp—1(n) = p(go(n—P+1)+g1(n—P+2)+...+gp-1(n))

and it is computed iteratively. However, this approxima-
tion is not usually very accurate and it is compensated
when the adaptive filter output is computed by

M-1 P-1
y(n) = Z z(n —m)w,(n—1) + Z rp(n)sp—1(n—1).
m=0 p=1

The correlations rp(n) (p = 0,1,..., P — 1) result from
computation of @7 (n)U (n—1) with the first element and
vector of @(n) and of U(n — 1) removed, respectively.
Now we have all to present the robust affine projection
algorithm for simplified Volterra filters. Input-output
relationship of a Volterra filter can be given as

g(n) = ho+ Y ha(i)z(n — i)+

and there have been several approaches to simplify the
relationship [1]. We consider memoryless nonlinearities
[6] that have been found as a reliable model for the



Table 1: Robust fast affine projection algorithm for sim-
plified Volterra filtering

Echo canceler output (p =0,...,P):

u(o—l)M—i—m(n) = a:(n - m)o) m=20,...,M -1,
o=1,...,0
o
rp(n) = rp(n—1)+Y w(n)’s(n —p)° -
0 "~
Zx(n—M+1)°w(n—p—M+1)°
01
y(n) = Z W (n — Dugy(n) +
o
> rp(m)spor(n—1)
p=1

e(n) = d(n)—-y(n)

Levinson-Durbin(p=1,...,P —1):

Eo(n) = ro(n), Co(n) =ri(n)
Kp(n) = —Cpr(n)/Epr(n)

ap(n) = Kp(n), ao(n) =1

ai(n) = ai(n)+Ky(n)ap,_i(n), i=1,....,p—1
Ep(n) = Bpa(n)+ Kp(m)Cpoi(n)

Cp(n) = Y ris1(n)ap—i(n)
=0

Weight update (p=1,...,P, m=0,...,MO —1):

gp(n) = e(n)/Ep_1(n)ay(n)
sp(n) = sp-1(n—1) + pgp(n) (so(n) =0)
wp(n) = wyp(n—1)4+uy(n— P+ 1)sp(n)

nonlinearities that occur in amplifiers and loudspeakers.
Then the extended input vector is of the form

i(n) = (x(n),...,x(n—M+1),x2(n),...,
mz(n—M—}-1),...,m0(n),...,xo(n—M+1)),

where O is the order of the simplified Volterra filter.
When the robust fast affine projection algorithm is gen-
eralized for the simplified Volterra case there are only
two things that are affected, namely, the computation of
the input vector and the computation of the generalized
correlations r,(n). The resulting algorithm is summa-
rized in Table 1.

Numerical stability of the algorithm can be monitored
from the reflection coefficient K,(n). If the underlying

Toeplitz matrix is positive definite (i.e. invertible) then
|Kp(n)| < 1.
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Figure 2: Far-end signal

3 Experimental results

We simulated the performance of the robust affine pro-
jection algorithm using test signals that have been mea-
sured in a car cabin using realistic test sequences and
a hands-free set. The measurements had been carried
out on normal and high volume level. Far-end signal is
shown in Figure 2. Performance of the algorithm was
measured in terms of ERLE computed in windows of
length 100 ms. The nonlinear parameters were adapted
only during voiced sections, since in the preliminary sim-
ulations the simplified Volterra filters were very sensitive
to voice activity detection.

We compared the performance of robust affine projec-
tion algorithm to the performance of normalized LMS
and QR-RLS -algorithm such that we compared the per-
formance of the simplified 5th order Volterra filters to
that of linear filters. As shown in Figure 3, we could
achieve some improvement (6-8 dB) in terms of ERLE,
when QR-RLS algorithm was used, especially in high
volume level. Actually, when we used the nonlinear fil-
ter on high volume level we could cover almost half of the
reduction in performance of linear filters that occurred
when volume level was switched from normal to high.
When normalized LMS algorithm was used we could
not find such improvement, the difference was only 0-3
dB as shown in Figure 4.

Now, ideally with the robust affine projection algo-
rithm we should get better results than with the normal-
ized LMS algorithm the performance of QR-RLS being
an upper bound for what we can achieve. However, the
resulting ERLE was only slightly higher than that of
normalized LMS, as shown in Figure 5 and the robust
affine projection algorithm seemed not to be as robust
as expected. It tended to become unstable with a high
projection order P unless the regularization parameter §
was rather large that resukted as slow convergence.

When QR-RLS algorithm was used with the simpli-
fied Volterra filter, the simulation took hours or even
days depending on the order of nonlinearity O (we used
for experiments a PC with Pentium III at 700MHz),
while when normalized LMS algorithm or robust fast
affine projection algorith was used adaptation of the
simplified Volterra filter could be carried out in real
time.
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Figure 3: Echo return loss enhancement (ERLE) of a linear
acoustic echo canceler when QR-RLS algorithm is used on
high (solid) and normal (dotted) volume level and the im-
provement that can be achieved using simplified 5th order
Volterra filters
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Figure 4: Echo return loss enhancement (ERLE) of a linear
acoustic echo canceler when normalized LMS algorithm is
used on high (solid) and normal (dotted) volume level and
the improvement that can be achieved using simplified 5th
order Volterra filters

4 Conclusions

We have generalized the robust fast affine projection al-
gorithm presented in [5] for simplified Volterra filters
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Figure 5: Echo return loss enhancement (ERLE) of a linear
acoustic echo canceler when robust affine projection algo-
rithm is used on high (solid) and normal (dotted) volume
level and the improvement that can be achieved using sim-
plified 5th order Volterra filters, projection order P = 2

and compared its performance to other adaptive algo-
rithms generalized for simplified Volterra filters.

When projection order P = 2 we got slightly better
performance than that of normalized LMS, but when
the projection order was increased the algorithm tended
to become unstable The algorithm was outperformed by
the QR-RLS -algorithm in the cost of added complexity.
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