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ABSTRACT

We address in this paper a method to perform blind sepa-
ration of over-determined instantaneous linear mixtures of
non-stationary sources. Our contribution is focused on the
identification of single source autoterms which correspond to
diagonal Spatial Time-Frequency Distribution of the sources
vector with only one non-zero diagonal entry. These latter
matrices are processed into an iterative joint-diagonalization
scheme which provides an estimation of the mixing matrix.

1 INTRODUCTION

The problem of blind source separation (BSS) in its simplest
form (identify m mutually independent unknown sources
from m linear and instantaneous mixtures - the observations
- without any a priori knowledge on the sources nor on the
mixture) has been widely studied and many solutions exist,
but generally under additional hypotheses. Actually a fa-
vorable case consists in assuming the sources to be indepen-
dently and identically distributed (i.i.d) and to have at least
as many observations as sources. Numerous algorithms have
been designed from these hypotheses (see [1] for a review of
them).

Other works have been carried out for cases where one of
the 1’ of the i.i.d hypothesis fails. The SOBI algorithm [2]
takes advantage of the eventual temporal self-correlation of
each source, that is to say when each source sequence is not
independently distributed. Other works deal with the non-
stationary case. The definition of “non-stationarity” through
papers is not very unique. Non-stationarity can be settled on
a statistic point of view: each source is no more identically
distributed in time and its statistical properties are time/lag
dependent; in this case independence has the standard statis-
tical meaning (see [3] for source separation in this context).
Besides, non-stationarity can be settled from a rather more
deterministic edge: the frequency content of each realization
of the sources is time-varying; in that case independence
means that the sources energy location in time-frequency
plane shall not completely overlap. From this point of view,
A. Belouchrani and M. Amin have proposed a blind source
separation method based on the joint-diagonalization of a
set of spatial t-f distribution matrices corresponding to a set
of source autoterms points [4]. But no procedure was given
to blindly select the needed autoterms, and this is the aim
of this paper.

Section 2 briefly exposes the SOBI algorithm and its ex-
tension to the joint-diagonalization of spatial t-f distribution
matrices instead of correlation matrices. In section 3 we pro-
pose a method for the selection of single source autoterms;
section 4 describes an iterative joint-diagonalization process
which eliminates perturbing autoterms. Section 5 provides
results on synthetic signals, conclusions and perspectives are
discussed in section 6.
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2 STATE OF THE ART

We consider the following model:

x(t) = As(t) + n(t) (1)

where: -
e x(t) =[zi(t),...,zm(t)]" is a m-vector of observations,
e s(t) = [s1(¢),.. .,sn(t)]T is a m-vector containing the

zero-mean unknown sources; they are mutually inde-
pendent for every time/lag,

e A is a m x n unknown full rank mixing matrix, with
m > n (over-determined case),

e n(t) is a i.i.d noise vector independent from the sources
defined by

E{n(t+ r)n(t)} = §(r) 0°Ln

where I, is the m x m identity matrix, §(7) the Dirac
impulse and o2 the unknown variance of the noise, iden-
tical on each observation.

The aim of blind source separation is to recover the sources
from the only observations. Without any a priori knowl-
edge on the sources or on the mixture, one can only recover
the sources up to permutations, sign change, constant fac-
tor (scale factor and phase shift in the complex case), since
these modifications can be balanced by the mixing matrix
to provide exactly the same observations. This is the well
known blind source separation indeterminacy property.

2.1 Stationary Ergodic Sources

We briefly recall here the SOBI method and the joint-
diagonalization concept, see [2] for details. We note:

R.s (1) =E{s(t + 7)s"(t)} = diag[p1(7) ... pu(7)]  (2)

with p;i(7) = E{si(t + 7) s;"(t)}. The indeterminacy prop-
erty allows us to set, without any loss of generality:

R (0) =1, (3)
Equation (1) leads to:

Ry (1) = E{x(t+7)x"(t)} = AR (7)A” +6(7) 0L, (4)

In practice, the autocorrelation matrices Ry (7) of the ob-
servations are estimated from the classical ergodic formula.

2.1.1 Step 1 - Whitening

We look for a m X m matrix W such that WAAZWH =1,
(W is a whitening matriz). In discrete-time, from (3) and
(4) we have:

Rxx [0] = AAH + UZIm (5)



We note [A1 ... An] the eigenvalues of R,,[0], sorted in de-
creasing order. We note [h; ...h,,] the corresponding eigen-
vectors. A being a m x n full rank matrix, AA has
m-n zero eigenvalues. Then, from equation (5), we have
0% = Any1 = ... = Am. Thus o? can be estimated by the
mean value 62 of the m-n smallest eigenvalues of Ry[0].
Moreover an estimation of W is:

hi,...,(A, —67)

W =[(\ —6%)

—-1/2 —1/2

h,] (6)

2.1.2 Step 2 - Joint-Diagonalization

We note U = WA, from the definition of W, U is unitary.
If we now compute

R, (1) = WR (1) W (7)
we have from equation (4), for 7 # 0:

R,.(r) = (WA)R,(r) (WA)" (8)
U diagloi (7). pa(M] U7 (9)

Thus, we see that for any 7 # 0, U is a diagonalizing matrix
of R, (7). Then, U could be estimated from the eigenvec-
tors of R, , (7), for any 7 # 0. In practice, in order to balance
the errors made on the estimation of R, (7) (due to the finite
length signals and to the use of an estimation of W) and then
to get a more robust estimation of U, the idea of SOBI is to
joint-diagonalize a set of K matrices {R,, (7), 7 =71... Tk }.

This provides us with an estimation of U = WA which

enables us to compute A and then the sources (see [5] for
a joint-diagonalization procedure). We have the following
uniqueness property of joint-diagonalization [2]:

Property Let M={M,,..., Mg} be a set of K matri-
ces where, for 1 < k < K, matriz My is in the form
M, = UD,U" with U a unitary matric and Dy =
diag[dy (k),...,dn(k)]. Then any unitary joint-diagonalizer
of M is equal to U (up to column permutations and phase

shifts) if and only if

This theorem is very important and the selection of
{m1...7x} strongly depends on it. It will further guar-
antee the exactness of our solution provided by the joint-
diagonalization of a set of spatial t-f distribution matrices
corresponding to the so called “single autoterms” from ev-
ery source.

2.2 Non-Stationary Sources

Now we assume that the sources are non-stationary, which
means that their statistical properties are time and lag de-
pendent. The covariance of vectors s(¢) and x(¢) are then:

E{s(t +7)s"(t)} = diag[p1(t,7),. .., pn(t, 7)]
A diag[pi (t,7),...,pn(t,7)] AT +6(1)0°1
(10)

RSS (t7 T)

Provided we can find like previously a m x n matrix W
such as WA(WA)? = 1I,, U = WA still diagonalizes
WR, (t,)WH for every (t,7 # 0). Equivalently, in the
time-frequency plane, equation (10) becomes:

SPWVax(t, f) = A SPWVae(t, f) A" +0°L,  (11)

where SPWVxx(t, f) is the Wigner-Ville Spectra defined
by SPWVax(t,f) = [72° Rye(t, 7)e™>"/7dr.  Consid-
ering a low noise environment we assume that the noise

term in (11) can be neglected such that SPWVxx(t, f) =
A SPWV4s(t, f) AY. Thus, since SPWVe(t, f) is still di-

agonal, U approximately diagonalizes WSPWV, (¢, fYW
for any (¢, f).

However, in practice, we can’t estimate Ry, (¢, 7) from the
classic ergodic formula like previously. Ideally, the knowl-
edge of a set of different realizations of the observation sig-
nals is required to make a spatial average instead of of a tem-
poral average. Though, if the signals are “locally” stationary
and ergodic, one can make an estimation of R, (t,7) from
only one realization of x(¢) with a smooth moving window

o(t,7):

+oo
R, (t,7) ~ RS (t,7) & / d(t —u,7) x(u+7)x*(u) du

(12)
Equivalently, SPWVxx(t, f) is approximated by:

+oo
SPWVxx(t’ f) ~ Dix(ta f) déf / R’ix(ta’r) 67j27rf7- dr

(13)
D2, (t, f) is an element of the Cohen class of Spatial Time-
Frequency Distributions (STFD) of x(t) for the particular
kernel ¢(t, 7).

2.2.1 Step 1 - Whitening

Since the sources are not stationary, we can’t anymore take
advantage of the BSS indeterminacy on scale by setting
R, (t,0) = I,, and compute W like previously. However, we
can normalize the time average of Rgs(¢,0). In the discrete-
time case it means we set:

N
1
lim o > Ruft0 =1, (14)

N—+oo
t=—N

From (10) we have Ry [t,0] = AR[t,0]A" + o?1,,. Thus:

N
w L3 I

So in practice, for finite signals of length N, we compute
the eigen-elements of + Eivzl R, [t,0] =~ AA" + 51, and
estimate W like in section 2.1.1.

2.2.2  Step 2 - Joint-Diagonalization
We propose as in [4] to joint-diagonalize a set of whitened
matrices D? (¢, f) = WD (t, f/)W¥ corresponding to

=xx

(t,f) points for which DZ(¢, f) is diagonal (instead of
SPWVss(t, f)). Now the question is, in front of real situ-

ations, when is D%(¢, f) diagonal ?

3 ITERATIVE SELECTION OF SINGLE AU-
TOTERMS

The matrix D (¢, f) is diagonal for (¢, f) points such that
the cross-STFD terms are very low (ideally zero) and for
which at least one diagonal entry is non-zero. In the sequel
such (t, f) points will be referred to as autoterms positions,
while the (¢, f) points with non-zero cross-STFD terms, and

very low (ideally zero) diagonal entries in DZ (¢, f) will be
referred to as crossterms positions. The success of the BSS
algorithm in determining the unitary matrix U will in prac-
tice strongly depend on the correct selection of autoterms.
Therefore it is crucial to have a selection criterion that is
able to distinguish between autoterms and crossterms points
based only on the whitened STFD matrices of observations



D? (t,f). Since U is a unitary matrix, the following rela-
tion is valid for observed STFD matrices corresponding to
the crossterms positions:

trace(Qﬁx tf) = trace(UDfS (t, f)UH)
= trace(D%(¢, f)) = 0. (16)

If two sources share a same particular frequency at the very
same time, that frequency will very likely appear with non-
zero value in the cross-TFD of those sources [6]. Hence,
the corresponding source STFD matrix will not be diagonal
anymore. That leads us to look only for single autoterms
positions, which means (¢, f) points such that DZ(¢, f) is
diagonal with only one non-zero diagonal entry. In such a
case the matrix D&, (t, f) has only one non-zero eigenvalue.
The following relation holds:

eig(D, (¢, f)) = eig(UDL (¢, /)U") = eig(DL(t, f)) (17)

where eig(M) denotes the eigenvalues of the matrix M. In re-
ality the source STFD matrices DZ (¢, f) are not exactly di-

agonal (since D% (¢, f) is not exactly the Wigner-Ville Spec-
tra of s(t)) . Hence, the “should-be zero” eigenvalues of sin-
gle autoterms STFD matrices are not exactly equal to zero.
Therefore,we propose the following criterion:

o ((max(| eig(Dg, (¢, 1)) |>>
f( S leis@e )] ) °

then (¢, f) is a single autoterm position

(18)

The threshold value ¢ is bounded to the interval [0,1]. The
closer to 1, the better candidates for joint diagonalization
will be chosen. However, because of the noise and the es-
timation errors, setting ¢ close to 1 can result in ignoring
the autoterms of particular source signals. Although the au-
toterms of one (but only one) particular source signals can
be ignored without significant decrease in the BSS perfor-
mance, one should try his best to find the autoterms of as
many different source signals as possible. Ignoring the au-
toterms of two or more sources introduces indeterminacy in
the process of joint-diagonalization, because the necessary
condition of the joint-diagonalization uniqueness property is
not fulfilled anymore. Therefore, we propose the following
procedure:

Algorithm 1 - Selection of single autoterms
1. Form the matrix of traces

TrM(t, f) = trace(DY, (¢, f)) (19)
2. Form the matrix of the eigenvalue criterion

max(| eig(D2, (¢, f)) |)
> | eig(DL, (£, ) |

3. Form the joint criteria matrix

CrM(t, f) = BiOp[TrM(t, f) > €] - EigM(t, f) (21)

EigM(t, f) =

(20)

where BiOp[true] = 1, BiOp[false] = 0 and ¢ is a cer-
tain trace threshold value.

4. For different decreasing levels I; (see below) select (¢, f)
points belonging to the neighborhood of the extrema of
CrM(t, f) greater than [;.

The level I; should decrease exponentially in dependence of
the number of selected (¢, f) points (in small steps at the be-
ginning and in larger steps at the end) ensuring the majority
of selected (t, f) points to belong to single autoterms, e.g:

LH

i=e % (22)

where k; is the total number of gathered (¢, f) points at it-
eration 4, « is a slope coefficient and K is the final number
of (¢, f) points we want to gather. The superpositions of au-
toterms (at least two sources present at the same particular
(t, f) point) and crossterms that pass the selection criteria
(due to low level I in the final iterations of step 4 in algo-
rithm 1) are eliminated by the iterative joint-diagonalization
process, explained in next section.

4 ITERATIVE JOINT DIAGONALIZATON

Selected (¢, f) points determine a set of K observation STFD
matrices D?_(ty, fr) that enter the procedure of joint diag-

onaliza‘uion.mfiowever7 because of the noise, of the autoterms
selection errors and of the approximation of the Wigner-Ville
Spectra, a single unitary matrix U cannot be an exact joint-
diagonalizer of all the observations STFD matrices. Sources
STFD matrices D% (tx, f), that can be calculated by pre-
and post-multiplying the corresponding observation STFD
matrices D2, (ty, fr) with U, are only quasi-diagonal with
their anti-diagonal elements as close to zero as possible.

Assuming that algorithm 1 ensures the selected (¢, f)
points to be mainly single autoterms positions, we can make
the following assertion: joint-diagonalization will more suc-
cessfully diagonalize the single autoterms matrices than ma-
trices corresponding to superposition of autoterms or even
to crossterms. Hence, a simple intuitive idea that signifi-
cantly improves the performance of the BSS algorithm, is
to eliminate the “least diagonalizable” D?_(t, fi) matrices
from the process of joint-diagonalization. We propose the
following criterion:

N ,
Vk=1..K if <(N_ 1Y n | D, (s fi) |> <

Y icizien | Dss; (tes fi) |
then remove Qix(tk,fk) (23)

where D (ti, fi) = UYDE, (t, fi)U, D2, (tr, fr) is

=xx

the (i,7)-th element of D2 (tk, fx), and U is the joint-
diagonalizer of the set of D?_ (t, fi) matrices. The criterion
(23) can be successively applied (eliminating all non-diagonal

Q;‘f (tk, fr) matrices and recalculating the U matrix at each
iteration) until there are no matrices left for elimination.
The parameter -y is usually set to 1. In other words, iter-

ative joint-diagonalization eliminates the observation STFD
matrices D?_(ty, fr) that correspond to D2 (ty, fr) matri-
ces with the average absolute diagonal value lower than the
average absolute non-diagonal value.

5 RESULTS WITH SYNTHETIC SIGNALS

In this section, the performance of our BBS algorithm, as
investigated via computer simulations, is reported. The fol-
lowing three signals were chosen as source signals:

j 2
Sl(t) — 6—12w(0.00024414t +0.05¢) (24)
82(t) —  —J2m(4.135in(0.01547¢)+0.25¢) (25)
j 3 2
ss(t) = o~ 72m(0.0000017872¢% —0.0014¢> 4-0.4027¢) (26)

Four observation signals were gathered setting the mixing

matrix A to:
041"
0.6 (27)

0.3

1.0
A= 05
0.3

e
oo

0.
0.
1.

O 00 W~

A complex white gaussian noise was added to the signals.
The Bessel’s kernel (a kernel based on the Bessel function of



the first kind) was used for the computation of the STFD’s,
since it provides a good reduction of the interferences within
a single source signal that come from interactions of partic-
ular frequency in different times, or interactions of different
frequencies in particular time [6]. The trace TrM(t, f) of
the whitened STFD matrices D?_(t, f) is depicted in Fig.1.
Notice the concentrations of power in the proximity of su-
perpositions of sources.
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Figure 1: Trace of the whitened STFD matrices D%, (t, f)

5.1 Single vs. superposition of autoterms

A set of 20 (¢, f) points (A1) that correspond to autoterms
of a single source signal s;;¢ = 1,2,3, and a set of 20 (¢, f)
points (A2) that correspond to a superposition of autoterms
of two source signals were chosen manually. Different com-
binations of elements from Al and A2 were used for the
determination of whitened observation STFD matrices to be
joint-diagonalized, always picking 20 (¢, f) points (m from
Al and n from A2, with m + n = 20). To assure the inde-
pendence of a particular (¢, f) point, 1000 different combi-
nations of (¢, f) points were tested for each fixed (m, n) pair.
The means of the correlation coefficients between the origi-
nal and estimated sources were computed over 100 runs of
the simulation with SNR set to 10 dB. As shown in Fig. 2,
(t, f) points that correspond to a superposition of autoterms
of two or more sources severely alter the unitary matrix U
and, therefore, decrease the accuracy of the source separa-
tion.
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Figure 2:  Correlation coefficients between the original

and the estimated sources in dependence of the number of
(t, f) points that correspond to a superposition of chosen
autoterms

5.2 Contribution of the proposed selection

In [4] the suggested (¢, f) points for joint-diagonalization
were those of the highest power in the t-f domain. We com-
pared this selection criterion with ours. Both algorithms
were tested over the [8-40 dB] range of SNR. The means
of the correlation coefficients between the original and esti-
mated signals were evaluated over 100 runs of the algorithms.
It is evident from Fig. 3 that our approach improves greatly

the one from [4]. This can be explained by noticing that (¢, f)
points of the highest power in the t-f domain correspond to
superposition of autoterms (see Fig. 1).

1
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Figure 3: Correlation coefficients between the original and
the estimated sources in dependence of SNR

6 CONCLUSIONS AND PERSPECTIVES

The BSS algorithm presented in [4] has proved to be very
robust in low noise environments. In this paper we have
concentrated on the selection of (¢, f) points. We showed
that the selection of the right matrices that enter the joint
diagonalization procedure is crucial for the performance of
BSS. Two general criteria for selecting (¢, f) points were pro-
posed. Criterion (16) eliminates the crossterms, while crite-
rion (18) emphasizes the single autoterms. Both criteria were
combined in Algorithm 1. An iterative joint-diagonalization
procedure was proposed and with its help the BSS perfor-
mance is no longer so strongly dependent on the selection of
the single autoterm (¢, f) points.

The definition of the decreasing level [ in Algorithm 1 is
not very strict and should be the object of further investi-
gation. However, it guarantees the success of the iterative
joint-diagonalization. Hence, as demonstrated in this paper,
when combined, both algorithms greatly improve the perfor-
mance and robustness of the BSS algorithm.

No word was spoken about choosing the most appropriate
t-f distribution. Generally, the distribution that minimizes
the interferences in the t-f plane is preferable, since it sim-
plifies the selection of (¢, f) points that represent true sig-
nal power. In our tests the Bessel reduced interference t-f
distribution was used. However, other reduced interference
t-f distributions, and signal dependent t-f distributions, that
match the underlying signal characteristics are also possible.
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