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ABSTRACT 

An analysis is presented of the degradation introduced by 
using an interpolated FIR filter in the Wiener filtering 
structure. Applications such as channel equalization and 
echo cancellation are considered. The proposed 
degradation measure is a function of the input signal 
correlation, of the sparseness degree, and of the 
interpolator. It results from a joint approach combining 
interpolated transversal filtering and linearly-constrained 
optimization. 
 

I. INTRODUCTION 

The fundamental principles of the interpolated finite 
impulse response (IFIR) filtering technique were 
introduced by Neuvo et al. [1]. It consists of exploiting the 
redundancy in the filter coefficients, removing quite a few 
impulse response samples, which are recreated using an 
interpolating scheme. 

Adaptive IFIR (AIFIR) filters have been alternatively 
used in applications that require transversal structures with 
large order, such as echo and noise cancellation and 
channel equalization. They show a better convergence rate 
and a smaller computational complexity for both filtering 
and coefficient updating operations [2]. 

However, a study describing the degradation 
introduced by the IFIR filter in the Wiener filtering 
structure has not yet been presented in the literature, 
perhaps, owing to the difficulties in treating the issue at 
hand as an unconstrained optimization problem. 

Through an original and elegant linearly-constrained 
approach, an appropriate formulation of the interpolated 
Wiener filtering problem has been introduced by the 
authors in [3,4], which leads us to more insights in this 
digital signal processing technique. Our objective here is to 
extend the theory developed, presenting a degradation 
analysis of interpolated transversal filters with regard to 
traditional Wiener filtering. The proposed analysis permits 
us to evaluate the degradation in terms of the input signal 

correlation, of the sparseness degree, and of the 
interpolator. 

The paper is organized as follows. In Section II, we 
briefly review the joint approach combining interpolated 
transversal filtering and linearly-constrained optimization. 
Section III presents the degradation analysis of IFIR filters 
in channel equalization and echo cancellation. Finally, in 
Section IV, we present our conclusions. 
 

II. INTERPOLATED WIENER FILTERING 

Consider the scheme of interpolated Wiener filtering 
shown in Figure 1, where the classical transversal filter is 
replaced by the cascade of a sparse FIR filter and an 
interpolator. Without loss of generality, all the parameters 
have been assumed to be real-valued. 

 
Figure 1: Interpolated Wiener filtering 

 
The error signal is given by 
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denotes the N-by-1 tap-weight vector of the sparse filter; 
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is the N-by-1 tap-input vector; and 
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the M-by-1 coefficient vector of the interpolator. 
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The sparse filter is characterized by the fact that only one 
sample of each set of L consecutive samples of its impulse 
response is nonzero. So, there is a total of K=N/L 
nonzero-valued samples (• means to round • to the 
nearest integer towards infinity) and N-K zero-valued 
samples. The zero-valued samples of the sparse filter are 
estimated by the interpolator. The integer L is referred to 
as sparseness degree or interpolation factor. 

Proceeding, the sparseness condition of wS can be 
easily achieved through a linearly-constrained approach 
[3]. It consists of making (e.g., for L=2 and N odd): 
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and of imposing CtwS=f in a constrained optimization 
process of the mean-square value of e(n). Furthermore, the 
generalized sidelobe canceller (GSC) structure can be 
directly used, and the scheme in Figure 1 turns into the 
form represented by Figure 2, since f=0 [4]. 

 
Figure 2: GSC structure for interpolated Wiener filtering. 

 
The signal blocking matrix C⊥ is given by 
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It is interesting to observe that the unconstrained filter w⊥ 
is composed merely of the nonzero coefficients of the 
sparse filter wS. In other words, w⊥ is not a sparse 
transversal filter. The premultiplication of w⊥ by C⊥ inserts 
zeros between its elements, making it sparse. 

Now, the error signal is given by 
iCw )()()( tt nndne Χ⊥⊥−= .                      (9) 

In the mean-squared error (MSE) sense, the vector w⊥ is 
chosen to minimize the following cost function: 
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In expanded forms, we have: 
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where p(m)=E{d(n)x(n-m)} and r(m-j)=E{x(n-j)x(n-m)}. 
Finally, the MSE optimum interpolated Wiener filter is 
given by 
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Substituting (16) in (10), we find the minimum MSE 
produced by the interpolated Wiener filter in Figure 2: 
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Moreover, the unique optimality of w⊥opt can be explicitly 
shown by 
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Utilizing the eigenanalysis of RIW, we have: 
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where ΛIW is the K-by-K diagonal matrix consisting of the 
eigenvalues, whose associated eigenvectors compose the 
columns of the K-by-K matrix QIW. Let 
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t
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be a transformed version of the difference between w⊥ and 
w⊥opt. Thus, the canonical form of (19) is defined by 
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where νk is the kth component of νIW and λk the kth 
eigenvalue. 
 

III. DEGRADATION ANALYSIS 

A quantitative measure of the degradation introduced by 
the IFIR filter in the Wiener filtering structure can be 
defined as 



IWmin

min

J
J

≡γ ,                               (22) 

where: 

opt
t2

min wp−= dJ σ  

pRp 1t2 −−= dσ                         (23) 
denotes the minimum MSE of the optimum Wiener filter 
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is the N-by-N correlation matrix of x(n), and 
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the N-by-1 cross-correlation vector between x(n) and d(n) 
[5,6]. Thus, the proposed degradation measure depends on 
the input signal correlation, the sparseness degree L and 
the interpolator. 

Firstly, in order to become aware the IFIR filter 
degradation, consider the equalization system shown in 
Figure 3 [5, chap. 9]. The random sequence b(n) applied to 
the channel input has zero mean and unit variance. The 
impulse response of the channel is described by the raised 
cosine: 
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where S controls the eigenvalue spread χ(R) of the 
correlation matrix of the tap inputs in the equalizer (Table 
I). The sequence v(n) is an additive white noise that 
corrupts the channel output with zero mean and variance 
σv

2=0.001. The equalizer has eleven coefficients and δ=7. 

 
Figure 3: Block diagram of equalization scheme. 

 
Table I: χ(R) versus S 

S 3.5 3.3 3.1 2.9 
χ(R) 46.8216 21.7132 11.1238 6.0782 

 
Figure 4 shows the degradation of the interpolated Wiener 
filter varying with the sparseness degree L (linear 
interpolation), for each eigenvalue spread χ(R). We can 
observe that more the equalizer input is ill conditioned, the 
smaller the degradation. Another observation is the very 
slight improvement from L=4 to L=5. Since the channel 
has an impulse response that is symmetric, the 
arrangement of the nonzero-valued coefficients for L=5 
has a better agreement. 
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Figure 4: IFIR filter degradation. 

 
In Table II, we give the degradation by fixing L=2 and 
varying eigenvalue spread. 

Table II: Degradation versus χ(R), for L=2 

χ(R) 46.8216 21.7132 11.1238 6.0782 
γ in dB -19.4818 -21.6327 -23.0124 -23.9273 

 
A second example that has been considered is the 
application of AIFIR filters in echo cancellation. Figure 5 
shows the principle of the echo canceller for one direction 
of transmission [5]. 

 
Figure 5: Echo cancellation scheme. 

 
The measure of echo cancellation performance is defined 
as 

2

2

e

r

σ

σ
ζ ≡ ,                                  (28) 

where 
)}(E{ 22 nrr =σ                              (29) 

and 
                            σ  )}(E{ 22 nee =

})](ˆ)([{E 2nrnr −=                         (30) 
denote the total and residual (x(n)=0) echo variances, 
respectively. 

The transfer function of the echo path (hybrid) was 
modeled as a moving average (MA) process of order 256, 
whose impulse response is shown in Figure 6. As far as the 
speech signal from far-end talker is concerned, we used a 
white noise of zero mean and unitary variance, and an 



asymptotically stationary autoregressive (AR) process of 
order 2 (colored noise). The AR(2) process is governed by 
the difference equation: 

)()2(8.0)1(1.0)( nvnununu =−−−− ,          (31) 
where v(n) is a white noise of zero mean and variance 
σv

2=0.27, which is chosen to make the variance of u(n) 
equal unity [5, chap. 2]. The eigenvalue spread of the 
correlation matrix of u(n) is χ(R)=313,3256. 
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Figure 6: Echo impulse response. 

 
The performance degradation of the AIFIR echo canceller 
in relation to the sparseness degree L can be verified in 
Figure 7. The echo impulse response identified by the 
interpolated Wiener filter is plotted in Figure 8, for L=16. 
Again, a linear interpolation scheme was used. 
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Figure 7: Minimum MSE evolution. 

 
Finally, it is worth pointing out that the above degradation 
analysis is done for an interpolated transversal filter, in 
which all its coefficients are sparse. However, the 
proposed approach can also be applied to other 
interpolated transversal filtering schemes. For instance, the 
two-stage echo canceller in [2]. 

0 50 100 150 200 250
-0.005

0

0.005

0.01

0.015

0.02

0.025

A
m

pl
itu

de

n  
Figure 8: Model identified using the IFIR filter with L=16. 
 

IV. CONCLUSION 

It has been shown that we can estimate the degradation 
introduced by an IFIR filter in the Wiener filtering 
structure, and that such a degradation depends on the input 
signal correlation, the sparseness degree, and the 
interpolation scheme. It was possible, thanks to a linearly-
constrained approach to the interpolated Wiener filtering 
problem. The approach is generic, since it can be extended 
to filters with different forms of sparseness. Actually, such 
an approach is a powerful and interesting tool of analysis 
for interpolated Wiener filtering. 
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